Comparative analysis of convolutional and multilayer perceptron neural networks for resource allocation in distributed computing systems
DOI:
https://doi.org/10.18372/2073-4751.83.20552Keywords:
distributed computing systems, resource allocation, Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), task scheduling, node selection, binary classification, tabular data processingAbstract
Efficient resource distribution in heterogeneous distributed computing systems requires intelligent node selection mechanisms capable of adapting to dynamic system conditions. This research presents a comparative evaluation of Convolutional Neural Network (CNN) and Multilayer Perceptron (MLP) architectures for binary node suitability classification in distributed task scheduling environments. The study employs five synthetic datasets ranging from 100 to 2000 instances, with each node characterized by four critical attributes: performance, security level, baud rate, and reliability. Experimental results demonstrate that the MLP architecture achieves validation accuracy between 91% and 98.8% with high consistency across dataset sizes, while the CNN architecture shows fluctuating performance ranging from 85% to 94%. The key finding reveals that MLP architectures outperform CNNs for tabular node data due to better alignment with unstructured attribute relationships, as fully connected layers naturally handle unordered features without imposing spatial locality assumptions. This empirical analysis provides practical guidance for architecture selection in AI-based resource schedulers, demonstrating that simpler architectures can outperform more complex ones when appropriately matched to problem structure. The findings contribute evidence-based recommendations for distributed systems practitioners implementing neural network-based scheduling solutions.
References
Mukhin V., Kulyk V. Modern models and methods of resource management of distributed computer systems. Telecommunication and Information Technologies. 2024. Vol. 1, No. 82. P. 1–13. URL:
https://tit.dut.edu.ua/index.php/telecommunication/article/view/2519/2400
Mukhin V., Kulyk V. Hybrid artificial intelligence architecture for dynamic workload scheduling in large-scale distributed computing systems. Telecommunication and Information Technologies. 2025. No. 1. URL:
https://tit.dut.edu.ua/index.php/telecommunication/article/view/2599/2475/
Govindarajan V., Sonani R., Patel P. S. A Framework for Security-Aware Resource Management in Distributed Cloud Systems. Academia Nexus Journal. 2023. Vol. 2, No. 2. URL: https://academianexusjournal.com/index.php/anj/article/view/12/13
Optimizing Distributed AI Workloads in Cloud Environments. World Journal of Advanced Research and Reviews. 2024. Vol. 23, No. 01. P. 3137–3149. URL: https://wjarr.com/sites/default/files/WJARR-2024-2030.pdf
Cranmer M., Melchior P., Nord B. Unsupervised Resource Allocation with Graph Neural Networks. Proceedings of Machine Learning Research. 2021. Vol. 148. P. 272–284. URL: https://proceedings.mlr.press/v148/cranmer21a/cranmer21a.pdf
Ahmadini A. A. H., Ali M. Z., Abdulazeez M. M. Neural networks to model COVID-19 dynamics and optimize healthcare resource allocation. Scientific Reports. 2025. Vol. 15, No. 1. URL: https://www.nature.com/articles/s41598-025-00153-9
Lead Data Engineer S. J. Efficient Orchestration of AI Workloads: Data Engineering Solutions for Distributed Cloud Computing. Zenodo. 2025. URL: https://zenodo.org/records/15053639
Erukulla N. Efficient Workload Allocation and Scheduling Strategies for AI-Intensive Tasks in Cloud Infrastructures. PowerTech Journal. 2023. Vol. 47, No. 4. URL: https://powertechjournal.com/index.php/journal/article/view/160
Wang D., Wang W., Gao H., Zhang Z., Han Z. Delay-Optimal Computation Offloading in Large-Scale Multi-Access Edge Computing Using Mean Field Game. IEEE Transactions on Wireless Communications. 2024. Vol. 23, No. 3. P. 1684–1698. DOI: 10.1109/TWC.2023.3291198
Qiu X., Zhang W., Chen W., Zheng Z. Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective. IEEE Transactions on Parallel and Distributed Systems. 2021. Vol. 32, No. 5. P. 1085–1101. DOI: 10.1109/TPDS.2020.3042599
Wu Y. et al. Task Scheduling in Geo-Distributed Computing: A Survey. IEEE Transactions on Parallel and Distributed Systems. 2025. Vol. 36, No. 10. P. 2073–2088. DOI: 10.1109/TPDS.2025.3591010
Wang S. et al. Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications. 2019. Vol. 37, No. 6. P. 1205–1221. DOI: 10.1109/JSAC.2019.2904348
Gerontas A., Peristeras V., Tambouris E., Kaliva E., Magnisalis I., Tarabanis K. Public Service Models: A Systematic Literature Review and Synthesis. IEEE Transactions on Emerging Topics in Computing. 2021. Vol. 9, No. 2. P. 637–648. DOI: 10.1109/TETC.2019.2939485
Huang L., Bi S., Zhang Y.-J. A. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks. IEEE Transactions on Mobile Computing. 2020. Vol. 19, No. 11. P. 2581–2593. DOI: 10.1109/TMC.2019.2928811
Ouyang T., Li R., Chen X., Zhou Z., Tang X. Adaptive User-managed Service Placement for Mobile Edge Computing: An Online Learning Approach. IEEE INFOCOM 2019. Paris, 2019. P. 1468–1476. DOI: 10.1109/INFOCOM.2019.8737560
Behmandpoor P., Patrinos P., Moonen M. Federated Learning Based Resource Allocation for Wireless Communication Networks. EUSIPCO 2022. Belgrade, 2022. P. 1656–1660. DOI: 10.23919/EUSIPCO55093.2022.9909708
Zhou Z., Chen X., Li E., Zeng L., Luo K., Zhang J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Proceedings of the IEEE. 2019. Vol. 107, No. 8. P. 1738–1762. DOI: 10.1109/JPROC.2019.2918951
Wang X., Han Y., Wang C., Zhao Q., Chen X., Chen M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by Federated Learning. IEEE Network. 2019. Vol. 33, No. 5. P. 156–165. DOI: 10.1109/MNET.2019.1800286
Liu Y., Mao Y., Shang X., Liu Z., Yang Y. Energy-Aware Online Task Offloading and Resource Allocation for Mobile Edge Computing. IEEE ICDCS 2023. Hong Kong, 2023. P. 339–349. DOI: 10.1109/ICDCS57875.2023.00073
Danylchuk H. B. (ed.). Advances in machine learning for the innovation economy. Proceedings of the 10th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-MLPEED 2022). CEUR Workshop Proceedings. 2023. Vol. 3465. 250 p. URL: https://ceur-ws.org/Vol-3465/
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).