
Проблеми інформатизації та управління, 3(83)`2025 93

using signature analysis. The method is integrated into the SDN control plane using CBQ and
WRED mechanisms for adaptive queue management. Experimental studies in the Mininet +
Floodlight environment confirmed that the combined Hurst–DPI approach provides an
increase in attack detection accuracy up to 94%, a reduction in response time by 35%, and a
reduction in false positives by 67% compared to traditional methods. The proposed algorithm
allows to increase the fault tolerance of SDN networks and maintain the quality of service of
critical services in the event of DDoS load.
Keywords: software-defined networks, DDoS, Hurst index, DPI, QoS, fault tolerance.

UDC: 004.032.26:004.75 DOI: 10.18372/2073-4751.83.20552
1Mukhin V.Ye.,

orcid.org/0000-0002-1206-9131,
1Kulyk V.O.,

orcid.org/0000-0003-3833-1529,
2Yaroviy O.V.,

orcid.org/0000-0002-3889-5730
2Kutsenko І.S.

orcid.org/0009-0005-7549-0643

COMPARATIVE ANALYSIS OF CONVOLUTIONAL AND MULTILAYER
PERCEPTRON NEURAL NETWORKS FOR RESOURCE ALLOCATION IN

DISTRIBUTED COMPUTING SYSTEMS
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
2Scientific and Methodical Center of the Defence Intelligence Research Institute, Kyiv.

e-mail: v.mukhin@kpi.ua,
e-mail: getem13@ukr.net,

1. Introduction
1.1.Problem Context and Mo-

tivation
Distributed computing systems

increasingly rely on heterogeneous nodes
with varying capabilities, ranging from high-
performance servers to resource-constrained
edge devices. Efficient task allocation in
such environments requires sophisticated
mechanisms capable of matching task
requirements to node characteristics while
accounting for dynamic system conditions.
Traditional scheduling algorithms employ
fixed rules and heuristics that prove unable
to adapt to changing workload patterns,
network conditions, and resource
availability. Machine learning approaches
offer data-driven solutions that learn from
historical patterns and node telemetry,
enabling adaptive decision-making in
complex distributed environments. Neural

networks have emerged as particularly
promising tools for capturing complex
relationships between node attributes and
task execution success. However,
architecture selection significantly impacts
not only prediction performance but also
computational efficiency, training
requirements, and deployment feasibility in
production environments. Despite growing
interest in AI-based scheduling, limited
research exists comparing different neural
architectures specifically for resource
allocation tasks. This study addresses this
gap through systematic comparison of
Convolutional Neural Network (CNN) and
Multilayer Perceptron (MLP) architectures
for node suitability classification in
distributed computing systems. [15]

1.2. Research Objectives and
Scope

The primary goal of this research is to
evaluate CNN and MLP performance for

21. defined networking controller
using machine learning techniques. Bulletin
of Electrical Engineering and Informatics,
2022, 11(5): 2836–2843.
DOI: 10.11591/eei.v11i5.4155.

22. Fouladi F., Rad A. A.,
Varathan K. D., Jelodar H. A DDoS attack
detection and countermeasure scheme based
on DWT and auto-encoder neural network
for SDN. Computer Networks, 2022,
214: 109140.
DOI: 10.1016/j.comnet.2022.109140.

23. Mehmood S., Amin R., Mustafa J.
et al. Distributed Denial of Services (DDoS)
attack detection in SDN using optimizer-
equipped CNN-MLP. PLOS ONE, 2025,
20(1): e0312425.
DOI: 10.1371/journal.pone.0312425.

24. Kulakov Y., Obozniy D. DPI
traffic classification technologies in SDN
networks: a survey. Проблеми
інформатизації та управління, 2021,
74: 49–54. DOI: 10.18372/2073-
4751.74.17881

25. Kulakov Y., Obozniy D.
Algorithm for orchestration of encrypted
traffic in SDN networks. Проблеми
інформатизації та управління, 2025,
81: 52–58. DOI: 10.18372/2073-
4751.81.20129

Кулаков Ю. О., Обозний Д. М.
МЕТОД ВИЯВЛЕННЯ DDOS-АТАК У ПРОГРАМНО ВИЗНАЧЕНИХМЕРЕЖАХ
НА ОСНОВІ ІНДЕКСУ ХЕРСТА ТА ТЕХНОЛОГІЇ ГЛИБИННОГО АНАЛІЗУ
ПАКЕТІВ

У статті розглянуто проблему своєчасного виявлення DDoS-атак у програмно
визначених мережах (SDN), де централізована архітектура контролера створює
критичну точку відмови в умовах зростання обсягів трафіку. Запропоновано
комбінований метод детектування, що поєднує поведінковий аналіз трафіку за
індексом Херста з вибірковою глибокою інспекцією пакетів (DPI). Підхід передбачає
динамічне визначення аномалій на основі зниження показника самоподібності трафіку
та подальше уточнення типу атаки за допомогою сигнатурного аналізу. Метод
інтегровано у контрольну площину SDN з використанням механізмів CBQ і WRED для
адаптивного керування чергами. Експериментальні дослідження в середовищі Mininet
+ Floodlight підтвердили, що комбінований Hurst–DPI підхід забезпечує підвищення
точності виявлення атак до 94 %, скорочення часу реакції на 35 % і зменшення хибних
спрацьовувань на 67 % порівняно з традиційними методами. Запропонований алгоритм
дозволяє підвищити відмовостійкість SDN-мереж і зберегти якість обслуговування
критичних сервісів у разі DDoS-навантаження.

Ключові слова: програмно визначені мережі, DDoS, індекс Херста, DPI, QoS,
відмовостійкість.

Kulakov Y. O., Oboznyi D. M.
METHOD FOR DETECTION OF DDOS ATTACKS IN SOFTWARE-DEFINED
NETWORKS BASED ON THE HURST INDEX AND DEEP PACKET INSPECTION
TECHNOLOGY

The article considers the problem of timely detection of DDoS attacks in software-
defined networks (SDN), where the centralized controller architecture creates a critical point
of failure in conditions of increasing traffic volumes. A combined detection method is
proposed, which combines behavioral analysis of traffic using the Hurst index with selective
deep packet inspection (DPI). The approach involves dynamic detection of anomalies based
on a decrease in the traffic self-similarity index and further refinement of the attack type

94 Проблеми інформатизації та управління, 3(83)`2025

binary node suitability classification across
varying dataset sizes and system conditions.
The study assesses accuracy, consistency,
and computational efficiency metrics to
provide comprehensive understanding of
each architecture’s strengths and limitations.
This investigation examines how architecture
choice affects model behavior with both
limited and abundant training data, reflecting
practical constraints faced during initial
deployment versus mature system operation.
The research provides practical
recommendations for distributed systems
practitioners selecting neural architectures
for resource scheduling implementations.
The study focuses on binary classification
using four standard node attributes:
performance (computational capacity),
security level (protection mechanisms), baud
rate (communication speed), and reliability
(historical uptime). Experiments employ
controlled synthetic datasets to isolate
architecture effects from data collection
artifacts and system-specific biases. The
article structure proceeds as follows: Section
2 reviews related work and formulates the
classification problem; Section 3 describes
the proposed MLP and CNN architectures;
Section 4 presents experimental setup and
results; Section 5 discusses findings and
practical implications; Section 6 concludes
with key insights and future research
directions. [16]

2. Related Work and Problem
Formulation

2.1. Traditional and AI-Based
Resource Allocation

Classical resource allocation methods
in distributed systems include centralized
scheduling algorithms, load balancing
techniques, and heuristic-based approaches
that rely on predefined rules and static
priority schemes [1-3]. Recent years have
witnessed a significant shift toward neural
network-based approaches for adaptive task
distribution, driven by the ability of deep
learning models to capture complex patterns
from historical execution data and real-time
node telemetry [4-6]. Deep learning
architectures enable learning intricate

relationships between node characteristics,
workload patterns, and task execution
outcomes without requiring explicit feature
engineering or domain-specific rule
formulation. Reinforcement learning
techniques have been successfully applied
for dynamic offloading decisions in edge
computing environments, where agents learn
optimal policies through interaction with the
distributed system. However, most prior
work in AI-based scheduling adopts a single
neural architecture without systematic
justification or comparative evaluation of
alternative designs. This gap is particularly
evident in the domain of tabular resource
data, where the suitability of different neural
architectures remains under-explored. The
present work contributes empirical evidence
for architecture selection in this domain,
providing systematic comparison of CNN
and MLP approaches specifically tailored to
node classification problems in distributed
computing environments. [1, 2]

2.2. Problem Statement
The node suitability classification

problem can be formally stated as follows:
given current node attributes, classify each
node as suitable or unsuitable for executing a
specific task. The input consists of four node
features that characterize operational
capabilities and reliability: performance
representing computational capacity
measured in processing units, security
indicating the protection level of
implemented security mechanisms, baud rate
quantifying communication speed for data
transfer operations, and reliability reflecting
historical uptime and availability patterns.
The output is a binary label indicating node
suitability for task assignment, with positive
classification signifying that the node meets
all necessary requirements for successful
task execution. Training data for the
classification model is collected from
continuous system monitoring, where node
attributes are periodically sampled and
labeled based on subsequent task execution
outcomes. The task is formulated as a
supervised binary classification problem,
where the neural network learns a mapping

Проблеми інформатизації та управління, 3(83)`2025 95

from the four-dimensional attribute space to
the binary decision space. The trained model
must demonstrate robust generalization to
unseen node states encountered during
deployment, as the distributed system
continuously evolves with changing
workloads, network conditions, and resource
availability patterns. [3, 17]

3. Proposed Neural Network
Architectures

3.1. System Overview
The proposed node classification system
implements an end-to-end pipeline
consisting of four primary stages: monitoring
agents collect node attributes from
distributed computing nodes, data
preprocessing normalizes attribute values to
the [0,1] range to ensure consistent neural
network input, the trained classifier performs
inference to predict suitability probability for
each candidate node, and the scheduler
utilizes these predictions to assign incoming
tasks to the highest-scoring available nodes.
Node attributes are collected in real-time
through continuous monitoring infrastructure
that samples performance metrics, security
configurations, communication capabilities,
and reliability statistics at regular intervals.
The trained neural network classifier
processes these normalized attributes and
produces probability scores indicating the
likelihood of successful task execution on
each node. The scheduling system leverages
these predictions by maintaining a ranked list
of nodes, enabling rapid task assignment
decisions that optimize resource utilization
while maintaining quality-of-service
requirements. [2, 18, 19]

3.2. Multilayer Perceptron Archi-
tecture

The MLP architecture is designed with
the rationale that fully connected layers can
capture all possible interactions between node
attributes without imposing structural
assumptions on the data. The network
topology consists of an input layer accepting
four normalized features, followed by three
hidden layers with progressively decreasing
dimensions: the first hidden layer contains 64
neurons with ReLU activation, the second

contains 32 neurons with ReLU activation, and
the third contains 16 neurons with ReLU
activation, culminating in an output layer with
a single neuron using sigmoid activation to
produce binary classification probabilities.
Dropout regularization with probability 0.3 is
applied after the first and second hidden layers
to prevent overfitting by randomly deactivating
neurons during training.

Figure 1: System architecture pipeline showing
the flow from monitoring through preprocessing,

neural network inference, and scheduling
decision to final task assignment.

The complete architecture contains
approximately 5,500 trainable parameters,
calculated as the sum of weight matrices and
bias vectors across all layers. Training employs
the Adam optimizer with learning rate 0.001,
binary cross-entropy loss function appropriate
for binary classification, batch size of 32
samples, and early stopping with patience of
15 epochs to halt training when validation
performance plateaus. The combination of
dropout regularization and early stopping

binary node suitability classification across
varying dataset sizes and system conditions.
The study assesses accuracy, consistency,
and computational efficiency metrics to
provide comprehensive understanding of
each architecture’s strengths and limitations.
This investigation examines how architecture
choice affects model behavior with both
limited and abundant training data, reflecting
practical constraints faced during initial
deployment versus mature system operation.
The research provides practical
recommendations for distributed systems
practitioners selecting neural architectures
for resource scheduling implementations.
The study focuses on binary classification
using four standard node attributes:
performance (computational capacity),
security level (protection mechanisms), baud
rate (communication speed), and reliability
(historical uptime). Experiments employ
controlled synthetic datasets to isolate
architecture effects from data collection
artifacts and system-specific biases. The
article structure proceeds as follows: Section
2 reviews related work and formulates the
classification problem; Section 3 describes
the proposed MLP and CNN architectures;
Section 4 presents experimental setup and
results; Section 5 discusses findings and
practical implications; Section 6 concludes
with key insights and future research
directions. [16]

2. Related Work and Problem
Formulation

2.1. Traditional and AI-Based
Resource Allocation

Classical resource allocation methods
in distributed systems include centralized
scheduling algorithms, load balancing
techniques, and heuristic-based approaches
that rely on predefined rules and static
priority schemes [1-3]. Recent years have
witnessed a significant shift toward neural
network-based approaches for adaptive task
distribution, driven by the ability of deep
learning models to capture complex patterns
from historical execution data and real-time
node telemetry [4-6]. Deep learning
architectures enable learning intricate

relationships between node characteristics,
workload patterns, and task execution
outcomes without requiring explicit feature
engineering or domain-specific rule
formulation. Reinforcement learning
techniques have been successfully applied
for dynamic offloading decisions in edge
computing environments, where agents learn
optimal policies through interaction with the
distributed system. However, most prior
work in AI-based scheduling adopts a single
neural architecture without systematic
justification or comparative evaluation of
alternative designs. This gap is particularly
evident in the domain of tabular resource
data, where the suitability of different neural
architectures remains under-explored. The
present work contributes empirical evidence
for architecture selection in this domain,
providing systematic comparison of CNN
and MLP approaches specifically tailored to
node classification problems in distributed
computing environments. [1, 2]

2.2. Problem Statement
The node suitability classification

problem can be formally stated as follows:
given current node attributes, classify each
node as suitable or unsuitable for executing a
specific task. The input consists of four node
features that characterize operational
capabilities and reliability: performance
representing computational capacity
measured in processing units, security
indicating the protection level of
implemented security mechanisms, baud rate
quantifying communication speed for data
transfer operations, and reliability reflecting
historical uptime and availability patterns.
The output is a binary label indicating node
suitability for task assignment, with positive
classification signifying that the node meets
all necessary requirements for successful
task execution. Training data for the
classification model is collected from
continuous system monitoring, where node
attributes are periodically sampled and
labeled based on subsequent task execution
outcomes. The task is formulated as a
supervised binary classification problem,
where the neural network learns a mapping

96 Проблеми інформатизації та управління, 3(83)`2025

effectively prevents overfitting while enabling
the model to learn complex attribute
interactions. The relatively simple architecture
facilitates rapid training convergence and
efficient deployment in resource-constrained
environments where inference latency is
critical. [2, 4, 20]

Figure 2: MLP architecture diagram showing
layer configuration with dimensions, activation
functions, and regularization techniques. Total

parameters: ~5,500.

3.3. Convolutional Neural Network
Architecture

The CNN architecture is designed to
perform hierarchical feature extraction
through convolution operations that identify
local patterns within the attribute sequence.

The network begins by reshaping the
four-dimensional input vector into shape
(4,1) to enable one-dimensional convolution,
followed by the first convolutional layer with
64 filters and kernel size 2, batch
normalization for training stability, the
second convolutional layer with 32 filters
and kernel size 2, another batch
normalization layer, a flattening operation to
convert feature maps into a one-dimensional
vector, two fully connected layers with 64
and 32 neurons respectively using ReLU
activation, dropout regularization with
probability 0.4 applied after the first dense
layer, and an output neuron with sigmoid
activation for binary classification.

The complete CNN architecture
contains approximately 3,800 trainable
parameters, fewer than the MLP due to
parameter sharing inherent in convolutional
operations where the same filter weights are
applied across different positions in the input.

Training configuration remains
identical to the MLP (Adam optimizer with
learning rate 0.001, binary cross-entropy
loss, batch size 32, early stopping with
patience 15) to ensure fair comparison
between architectures. The convolutional
layers attempt to extract local patterns and
dependencies from sequential arrangement
of node attributes, while batch normalization
stabilizes training dynamics by reducing
internal covariate shift. Despite having fewer
parameters due to weight sharing in
convolutional operations, the CNN’s
inductive bias toward spatial locality may
not align optimally with the unordered nature
of tabular node attributes. [5]

4. Experimental Setup and
Results

4.1. Dataset and Methodology
The experimental evaluation employs

five synthetic datasets containing 100, 500,

Проблеми інформатизації та управління, 3(83)`2025 97

1000, 1500, and 2000 instances respectively,
designed to assess architecture performance
across varying data availability conditions. Each
dataset instance consists of four node attributes
and one binary suitability label, representing
realistic distributed computing scenarios. Node
attributes are generated from appropriate
probability distributions: performance values
follow a uniform distribution simulating
heterogeneous computational capabilities,
security levels are drawn from a beta
distribution reflecting varying protection
implementations, baud rates follow a normal
distribution representing typical network
bandwidth variations, and reliability scores use
a beta distribution modeling historical uptime
patterns. Binary labels are assigned through a
weighted threshold function that combines the
four attributes with configurable weights, with
10% label noise introduced to simulate real-
world measurement uncertainty and
classification ambiguity. Training and
validation data are split using an 80-20 ratio
with stratification to maintain class balance
across both sets, ensuring representative
evaluation of model performance. Each
architecture undergoes training three times
with different random seeds, with results
averaged to account for initialization
sensitivity and provide robust performance
estimates. Primary evaluation metrics include
accuracy as the main performance indicator,
along with precision, recall, F1-score for
comprehensive classification assessment, and
training time to evaluate computational
efficiency. All experiments were conducted in
Python 3.10 environment.

Training and evaluation were performed
on a workstation equipped with an AMD
Ryzen 9 5900X CPU, 32 GB of RAM, and an
NVIDIA RTX 4070 GPU with 12 GB VRAM.
Random seeds were fixed across runs to ensure
reproducibility of all results.

The MLP architecture demonstrates
consistently strong performance across all
dataset sizes, achieving validation accuracies
of 91% on 100 instances, 97.5% on 500
instances, 98.8% on 1000 instances, 98.5%
on 1500 instances, and 98.2% on 2000
instances. Performance exhibits consistent

improvement with increasing training data
availability, reaching a plateau above 1000
instances where additional data provides
diminishing marginal returns. The
architecture demonstrates minimal
overfitting characteristics, with training-
validation accuracy gaps remaining below
1% across all dataset sizes, indicating
effective generalization enabled by dropout
regularization and early stopping
mechanisms. Both precision and recall
metrics exceed 90% across all experiments,
demonstrating balanced classification
performance without significant bias toward
either class.

Figure 3: CNN architecture diagram showing
convolutional layers with batch normalization,

followed by dense layers with dropout
regularization. Total parameters: ~3,800.

effectively prevents overfitting while enabling
the model to learn complex attribute
interactions. The relatively simple architecture
facilitates rapid training convergence and
efficient deployment in resource-constrained
environments where inference latency is
critical. [2, 4, 20]

Figure 2: MLP architecture diagram showing
layer configuration with dimensions, activation
functions, and regularization techniques. Total

parameters: ~5,500.

3.3. Convolutional Neural Network
Architecture

The CNN architecture is designed to
perform hierarchical feature extraction
through convolution operations that identify
local patterns within the attribute sequence.

The network begins by reshaping the
four-dimensional input vector into shape
(4,1) to enable one-dimensional convolution,
followed by the first convolutional layer with
64 filters and kernel size 2, batch
normalization for training stability, the
second convolutional layer with 32 filters
and kernel size 2, another batch
normalization layer, a flattening operation to
convert feature maps into a one-dimensional
vector, two fully connected layers with 64
and 32 neurons respectively using ReLU
activation, dropout regularization with
probability 0.4 applied after the first dense
layer, and an output neuron with sigmoid
activation for binary classification.

The complete CNN architecture
contains approximately 3,800 trainable
parameters, fewer than the MLP due to
parameter sharing inherent in convolutional
operations where the same filter weights are
applied across different positions in the input.

Training configuration remains
identical to the MLP (Adam optimizer with
learning rate 0.001, binary cross-entropy
loss, batch size 32, early stopping with
patience 15) to ensure fair comparison
between architectures. The convolutional
layers attempt to extract local patterns and
dependencies from sequential arrangement
of node attributes, while batch normalization
stabilizes training dynamics by reducing
internal covariate shift. Despite having fewer
parameters due to weight sharing in
convolutional operations, the CNN’s
inductive bias toward spatial locality may
not align optimally with the unordered nature
of tabular node attributes. [5]

4. Experimental Setup and
Results

4.1. Dataset and Methodology
The experimental evaluation employs

five synthetic datasets containing 100, 500,

98 Проблеми інформатизації та управління, 3(83)`2025

4.2. MLP Performance Results
Training time scales approximately

linearly with dataset size, ranging from 2
seconds for the smallest dataset to 18
seconds for the largest, reflecting efficient
gradient computation in fully connected
architectures. The consistent performance
trajectory and tight confidence intervals
across multiple runs demonstrate the MLP’s
stability and reliability for node
classification tasks.

Table 1. Comparative performance results
showing validation accuracy and training time

for MLP and CNN architectures across five
dataset scales. MLP demonstrates superior and
more consistent accuracy with faster training

times.
Datas

et
Size

MLP
Accu-
racy

CNN
Accu-
racy

MLP
Trai-
ning
Time

CNN
Trai-
ning
Time

100
rows

91.0% 85.0% 2s 4s

500
rows

97.5% 91.0% 5s 9s

1000
rows

98.8% 92.0% 9s 16s

1500
rows

98.5% 94.0% 13s 24s

2000
rows

98.2% 93.0% 18s 32s

4.3. CNN Performance Results
The CNN architecture achieves

validation accuracies of 85% on 100
instances, 91% on 500 instances, 92% on
1000 instances, 94% on 1500 instances, and
93% on 2000 instances, showing
competitive but less consistent performance
compared to the MLP. Performance exhibits
non-monotonic behavior with a notable
fluctuation at 1000 instances, followed by
improvement at 1500 instances and slight
degradation at 2000 instances, suggesting
sensitivity to dataset characteristics or
training dynamics. Experimental runs
display greater variance across different
random seeds, with standard deviations 2-3
times larger than MLP results, indicating

sensitivity to weight initialization and
potential difficulty in finding stable
optimization trajectories. Training time
proves 1.8 times slower than the MLP on
average, ranging from 4 seconds for 100
instances to 32 seconds for 2000 instances,
despite having fewer total parameters due to
computational overhead of convolution
operations and batch normalization.
Precision metrics remain comparable to
MLP performance, but recall exhibits higher
variability, suggesting inconsistent
sensitivity to positive class instances across
different training conditions.

4.4. Comparative Analysis
Comprehensive comparison reveals

that the MLP architecture outperforms the
CNN on three of five datasets, with
statistically significant advantages on the
1000-instance (p=0.031) and 1500-instance
(p=0.018) datasets based on paired t-tests
across multiple runs.

Table 2. Comprehensive performance
comparison across all architectures averaged
over five dataset sizes. Metrics include model

complexity (parameters), accuracy, classification
quality (precision, recall, F1), and computational
efficiency (training time). MLP achieves the best

accuracy-efficiency trade-off.

Arch
itectu

re

Par
am
e-

ters

Avg
Ac

cura
cy

Pre
ci-
sio
n

Reca
ll

F1-
Scor

e

Avg
Train
ing

Time
MLP ~5,

500
96.6
%

94.2
%

93.8
%

94.0
%

9.4s

CNN ~3,
800

91.0
%

91.5
%

88.3
%

89.8
%

17.0s

Logisti
c Reg

~5 79.2
%

76.8
%

74.5
%

75.6
%

0.8s

Ran-
dom

Forest

~1,
200

88.4
%

86.9
%

85.2
%

86.0
%

3.2s

The MLP consistently demonstrates
tighter confidence intervals with standard
deviations averaging 0.8%, compared to the
CNN’s 2.1%, indicating superior training
stability and reproducibility. Both neural
architectures significantly exceed traditional
baseline methods, with logistic regression

Проблеми інформатизації та управління, 3(83)`2025 99

achieving 75-83% accuracy and random forest
reaching 85-92% accuracy on the same
datasets, validating the value of neural network
approaches for this classification task.

Computational efficiency analysis favors
the MLP architecture, offering faster training
convergence and comparable inference latency
(0.5ms per instance for MLP versus 0.8ms for
CNN), making it more suitable for resource-
constrained deployment scenarios. The CNN’s
parameter efficiency advantage (3,800
parameters versus 5,500 for MLP) does not
translate into practical benefits for tabular node
data, as the convolutional operations’ spatial
locality assumptions prove misaligned with the
unordered nature of node attributes. The
empirical results support the hypothesis that
architecture selection must consider data
structure characteristics, with fully connected
networks demonstrating superior performance
for tabular feature spaces lacking inherent
spatial or temporal ordering. [6, 7]

5. Discussion
5.1. Interpretation of Results
The MLP architecture’s consistent

superior performance stems from
fundamental alignment between its
architectural design and the structure of
tabular node attribute data. Fully connected
layers naturally handle unordered attributes
by learning arbitrary interaction patterns
between features without imposing
structural assumptions about spatial or
temporal relationships. In contrast, the
CNN architecture is explicitly designed for
data exhibiting spatial locality, such as
images where neighboring pixels contain
correlated information, or time series
where adjacent samples share temporal
dependencies. Convolutional filters seek
local patterns within sequential arran-
gements of features, an operation that
proves inappropriate for independent node
attributes where permuting feature order
does not change semantic meaning. The
fluctuating CNN performance across
dataset sizes suggests difficulty in finding
stable feature representations when the
inductive bias conflicts with data structure.
Dataset size effects reveal that CNNs may

require specific data thresholds or
characteristics to overcome architectural
misalignment, whereas MLPs demonstrate
graceful performance scaling with
consistent improvement trajectories. The
MLP’s architectural simplicity facilitates
more straightforward interpretability,
debugging, and hyperparameter tuning
compared to the multi-stage hierarchical
processing in CNNs. These results
generalize to similar resource allocation
problems involving structured tabular
attributes without inherent ordering,
suggesting that architecture selection must
prioritize alignment with data
characteristics over architectural sophi-
stication.

5.2. Practical Recommendations
Distributed systems practitioners

implementing node classification with
tabular attributes should prefer MLP
architectures over CNNs due to superior
accuracy, consistency, and computational
efficiency demonstrated in this study. CNNs
should only be considered when input data
exhibits inherent spatial structure (such as
node attributes organized in grid topologies)
or temporal patterns (such as time-windowed
performance metrics) that justify
convolutional operations. Development
resources should be invested in tuning and
optimizing MLP architectures rather than
attempting to force CNN architectures to
work with fundamentally mismatched data
structures. Ensemble approaches combining
multiple MLPs or integrating MLPs with
decision trees may provide additional
accuracy improvements when maximum
performance is critical for production
deployments. System architects must balance
model complexity with deployment
constraints including training time, inference
latency, memory footprint, and update
frequency when selecting architectures for
resource-constrained environments. The
fundamental principle of matching
architecture inductive biases to problem
characteristics should guide selection
decisions, with empirical validation on
representative data preferred over adopting

4.2. MLP Performance Results
Training time scales approximately

linearly with dataset size, ranging from 2
seconds for the smallest dataset to 18
seconds for the largest, reflecting efficient
gradient computation in fully connected
architectures. The consistent performance
trajectory and tight confidence intervals
across multiple runs demonstrate the MLP’s
stability and reliability for node
classification tasks.

Table 1. Comparative performance results
showing validation accuracy and training time

for MLP and CNN architectures across five
dataset scales. MLP demonstrates superior and
more consistent accuracy with faster training

times.
Datas

et
Size

MLP
Accu-
racy

CNN
Accu-
racy

MLP
Trai-
ning
Time

CNN
Trai-
ning
Time

100
rows

91.0% 85.0% 2s 4s

500
rows

97.5% 91.0% 5s 9s

1000
rows

98.8% 92.0% 9s 16s

1500
rows

98.5% 94.0% 13s 24s

2000
rows

98.2% 93.0% 18s 32s

4.3. CNN Performance Results
The CNN architecture achieves

validation accuracies of 85% on 100
instances, 91% on 500 instances, 92% on
1000 instances, 94% on 1500 instances, and
93% on 2000 instances, showing
competitive but less consistent performance
compared to the MLP. Performance exhibits
non-monotonic behavior with a notable
fluctuation at 1000 instances, followed by
improvement at 1500 instances and slight
degradation at 2000 instances, suggesting
sensitivity to dataset characteristics or
training dynamics. Experimental runs
display greater variance across different
random seeds, with standard deviations 2-3
times larger than MLP results, indicating

sensitivity to weight initialization and
potential difficulty in finding stable
optimization trajectories. Training time
proves 1.8 times slower than the MLP on
average, ranging from 4 seconds for 100
instances to 32 seconds for 2000 instances,
despite having fewer total parameters due to
computational overhead of convolution
operations and batch normalization.
Precision metrics remain comparable to
MLP performance, but recall exhibits higher
variability, suggesting inconsistent
sensitivity to positive class instances across
different training conditions.

4.4. Comparative Analysis
Comprehensive comparison reveals

that the MLP architecture outperforms the
CNN on three of five datasets, with
statistically significant advantages on the
1000-instance (p=0.031) and 1500-instance
(p=0.018) datasets based on paired t-tests
across multiple runs.

Table 2. Comprehensive performance
comparison across all architectures averaged
over five dataset sizes. Metrics include model

complexity (parameters), accuracy, classification
quality (precision, recall, F1), and computational
efficiency (training time). MLP achieves the best

accuracy-efficiency trade-off.

Arch
itectu

re

Par
am
e-

ters

Avg
Ac

cura
cy

Pre
ci-
sio
n

Reca
ll

F1-
Scor

e

Avg
Train
ing

Time
MLP ~5,

500
96.6
%

94.2
%

93.8
%

94.0
%

9.4s

CNN ~3,
800

91.0
%

91.5
%

88.3
%

89.8
%

17.0s

Logisti
c Reg

~5 79.2
%

76.8
%

74.5
%

75.6
%

0.8s

Ran-
dom

Forest

~1,
200

88.4
%

86.9
%

85.2
%

86.0
%

3.2s

The MLP consistently demonstrates
tighter confidence intervals with standard
deviations averaging 0.8%, compared to the
CNN’s 2.1%, indicating superior training
stability and reproducibility. Both neural
architectures significantly exceed traditional
baseline methods, with logistic regression

100 Проблеми інформатизації та управління, 3(83)`2025

complex architectures based solely on their
success in other domains.

5.3. Limitations and Future Work
This study employs synthetic datasets

generated through controlled simulation,
necessitating validation with real-world
distributed system telemetry to confirm
findings under actual operating conditions
with natural data distributions and noise
patterns. The binary classification
formulation represents a simplified version
of practical scheduling problems, which
may involve multi-class node
categorization, regression-based per-
formance prediction, or multi-objective
optimization balancing multiple competing
constraints. The fixed four-attribute feature
space may not capture the full complexity
of production systems with dozens of
monitoring metrics, dynamic workload
characteristics, and heterogeneous hard-
ware configurations. This research does not
explore advanced architectural variants
including attention mechanisms that could
selectively focus on relevant attributes,
transformer architectures that have shown
promise for tabular data, or hybrid designs
combining convolutional and fully
connected layers. Future research
directions include Neural Architecture
Search for automated optimization that
discovers problem-specific architectures
without manual design, online learning
approaches enabling continuous adaptation
to evolving system conditions and
workload patterns, multi-objective
optimization simultaneously considering
accuracy alongside inference latency and
energy consumption, and explainability
techniques such as SHAP values or
attention visualization to provide
interpretable justifications for scheduling
decisions. Hybrid architectures syste-
matically combining CNN feature extra-
ction with MLP classification warrant inve-
stigation to determine whether comple-
mentary strengths can be leveraged. Real-
world deployment studies in production
distributed systems are essential to validate
laboratory findings, assess robustness to

operational challenges, and quantify
practical impact on resource utilization and
application performance. [8]

5.4. Computational Complexity
and Scalability

In terms of computational comple-
xity, the MLP exhibits O(n × h) time
complexity per forward pass, where n is the
number of input features and h the total
number of hidden neurons. The CNN, on the
other hand, adds convolutional overhead
proportional to O(f × k × n), where f is the
number of filters and k the kernel size.
Empirically, the CNN’s training time scaled
1.8× slower than the MLP due to
convolutional and batch normalization
operations. Regarding scalability, both
architectures scale linearly with dataset
size; however, the MLP demonstrates
superior efficiency in low-latency
environments due to its smaller
computational graph and absence of
convolutional layers. These characteristics
make the MLP more appropriate for
distributed schedulers deployed on edge
devices or lightweight nodes. [9]

6. Conclusions
6.1. Summary and Key Insights

This research conducted a systematic
comparative evaluation of Convolutional
Neural Network and Multilayer Perceptron
architectures for node suitability
classification across five dataset scales
ranging from 100 to 2000 instances. The
MLP architecture demonstrated superior
and consistent performance, achieving
validation accuracies between 91% and
98.8% with predictable improvement
curves as training data increased, while
maintaining tight confidence intervals
indicating reliable reproducibility. The
CNN architecture showed competitive but
variable performance ranging from 85% to
94% accuracy, exhibiting non-monotonic
behavior across dataset sizes and higher
sensitivity to initialization conditions. The
key insight emerging from this empirical
analysis is that architecture selection must
fundamentally align with inherent data
structure characteristics rather than

Проблеми інформатизації та управління, 3(83)`2025 101

defaulting to architecturally sophisticated
approaches. The MLP’s fully connected
design naturally suits unordered tabular
attributes by learning arbitrary feature
interactions without spatial locality
assumptions, whereas the CNN’s
convolutional operations impose structural
biases inappropriate for independent node
features. This research demonstrates that
simpler architectures can substantially
outperform more complex ones when
properly matched to problem structure,
challenging the assumption that
architectural complexity correlates with
performance. Computational efficiency
analysis reveals the MLP trains 1.8 times
faster than the CNN while achieving
superior accuracy, providing compelling
evidence for MLP adoption in resource-
constrained deployments. Both neural
approaches significantly exceed traditional
baseline methods including logistic
regression and random forests, justifying
the adoption of deep learning techniques
for intelligent resource scheduling in
distributed systems. [10]

The findings provide evidence-based
guidance for practitioners building AI-powered
resource managers, emphasizing the importance
of architecture-problem fit over pursuing state-
of-the-art complexity. The broader impact
extends beyond distributed scheduling to any
domain involving tabular data classification,
suggesting that careful architecture selection
based on data characteristics should precede
optimization efforts. [11]

The scientific novelty of this research
lies in providing the first comprehensive
empirical comparison between MLP and
CNN architectures specifically for node
suitability classification in distributed
computing systems. The study establishes a
reproducible methodological framework
and empirical evidence that simpler
architectures can outperform more complex
ones when matched to the structural
properties of tabular node data.

Future work should explore adaptive
architectures that automatically configure
based on input data properties, enabling

systems to self-optimize without manual
architecture engineering. As distributed
computing systems continue scaling to
unprecedented sizes, principled neural
architecture selection becomes increasingly
critical for achieving efficient resource
utilization while maintaining acceptable
computational overhead and operational
transparency. [12] [13] [14]

References
1. Mukhin V., Kulyk V. Modern

models and methods of resource
management of distributed computer
systems. Telecommunication and
Information Technologies. 2024. Vol. 1, No.
82. P. 1–13. URL:
https://tit.dut.edu.ua/index.php
/telecommunication/article/view/2519/2400

2. Mukhin V., Kulyk V. Hybrid
artificial intelligence architecture for
dynamic workload scheduling in large-scale
distributed computing systems.
Telecommunication and Information
Technologies. 2025. No. 1.
URL:https://tit.dut.edu.ua/index.php/telecom
munication/article/view/2599/2475/

3. Govindarajan V., Sonani R., Patel P.
S. A Framework for Security-Aware
Resource Management in Distributed Cloud
Systems. Academia Nexus Journal. 2023.
Vol. 2, No. 2.
URL: https://academianexusjournal.com
/index.php/anj/article/view/12/13

4. Optimizing Distributed AI
Workloads in Cloud Environments. World
Journal of Advanced Research and Reviews.
2024. Vol. 23, No. 01. P. 3137–3149. URL:
https://wjarr.com/sites/default/
files/WJARR-2024-2030.pdf

5. Cranmer M., Melchior P., Nord B.
Unsupervised Resource Allocation with
Graph Neural Networks. Proceedings of
Machine Learning Research. 2021. Vol. 148.
P. 272–284. URL:
https://proceedings.mlr.press/v148
/cranmer21a/cranmer21a.pdf

6. Ahmadini A. A. H., Ali M. Z.,
Abdulazeez M. M. Neural networks to model
COVID-19 dynamics and optimize
healthcare resource allocation. Scientific

complex architectures based solely on their
success in other domains.

5.3. Limitations and Future Work
This study employs synthetic datasets

generated through controlled simulation,
necessitating validation with real-world
distributed system telemetry to confirm
findings under actual operating conditions
with natural data distributions and noise
patterns. The binary classification
formulation represents a simplified version
of practical scheduling problems, which
may involve multi-class node
categorization, regression-based per-
formance prediction, or multi-objective
optimization balancing multiple competing
constraints. The fixed four-attribute feature
space may not capture the full complexity
of production systems with dozens of
monitoring metrics, dynamic workload
characteristics, and heterogeneous hard-
ware configurations. This research does not
explore advanced architectural variants
including attention mechanisms that could
selectively focus on relevant attributes,
transformer architectures that have shown
promise for tabular data, or hybrid designs
combining convolutional and fully
connected layers. Future research
directions include Neural Architecture
Search for automated optimization that
discovers problem-specific architectures
without manual design, online learning
approaches enabling continuous adaptation
to evolving system conditions and
workload patterns, multi-objective
optimization simultaneously considering
accuracy alongside inference latency and
energy consumption, and explainability
techniques such as SHAP values or
attention visualization to provide
interpretable justifications for scheduling
decisions. Hybrid architectures syste-
matically combining CNN feature extra-
ction with MLP classification warrant inve-
stigation to determine whether comple-
mentary strengths can be leveraged. Real-
world deployment studies in production
distributed systems are essential to validate
laboratory findings, assess robustness to

operational challenges, and quantify
practical impact on resource utilization and
application performance. [8]

5.4. Computational Complexity
and Scalability

In terms of computational comple-
xity, the MLP exhibits O(n × h) time
complexity per forward pass, where n is the
number of input features and h the total
number of hidden neurons. The CNN, on the
other hand, adds convolutional overhead
proportional to O(f × k × n), where f is the
number of filters and k the kernel size.
Empirically, the CNN’s training time scaled
1.8× slower than the MLP due to
convolutional and batch normalization
operations. Regarding scalability, both
architectures scale linearly with dataset
size; however, the MLP demonstrates
superior efficiency in low-latency
environments due to its smaller
computational graph and absence of
convolutional layers. These characteristics
make the MLP more appropriate for
distributed schedulers deployed on edge
devices or lightweight nodes. [9]

6. Conclusions
6.1. Summary and Key Insights

This research conducted a systematic
comparative evaluation of Convolutional
Neural Network and Multilayer Perceptron
architectures for node suitability
classification across five dataset scales
ranging from 100 to 2000 instances. The
MLP architecture demonstrated superior
and consistent performance, achieving
validation accuracies between 91% and
98.8% with predictable improvement
curves as training data increased, while
maintaining tight confidence intervals
indicating reliable reproducibility. The
CNN architecture showed competitive but
variable performance ranging from 85% to
94% accuracy, exhibiting non-monotonic
behavior across dataset sizes and higher
sensitivity to initialization conditions. The
key insight emerging from this empirical
analysis is that architecture selection must
fundamentally align with inherent data
structure characteristics rather than

102 Проблеми інформатизації та управління, 3(83)`2025

Reports. 2025. Vol. 15, No. 1. URL:
https://www.nature.com/

articles/s41598-025-00153-9
7. Lead Data Engineer S. J. Efficient

Orchestration of AI Workloads: Data
Engineering Solutions for Distributed Cloud
Computing. Zenodo. 2025. URL:
https://zenodo.org/records/15053639

8. Erukulla N. Efficient Workload
Allocation and Scheduling Strategies for AI-
Intensive Tasks in Cloud Infrastructures.
PowerTech Journal. 2023. Vol. 47, No. 4.
URL: https://powertechjournal.com
/index.php/journal/article/view/160

9. Wang D., Wang W., Gao H., Zhang
Z., Han Z. Delay-Optimal Computation
Offloading in Large-Scale Multi-Access
Edge Computing Using Mean Field Game.
IEEE Transactions on Wireless
Communications. 2024. Vol. 23, No. 3. P.
1684–1698.
DOI: 10.1109/TWC.2023.3291198

10. Qiu X., Zhang W., Chen W., Zheng
Z. Distributed and Collective Deep
Reinforcement Learning for Computation
Offloading: A Practical Perspective. IEEE
Transactions on Parallel and Distributed
Systems. 2021. Vol. 32, No. 5. P. 1085–1101.
DOI: 10.1109/TPDS.2020.3042599

11. Wu Y. et al. Task Scheduling in
Geo-Distributed Computing: A Survey. IEEE
Transactions on Parallel and Distributed
Systems. 2025. Vol. 36, No. 10. P. 2073–
2088.
 DOI: 10.1109/TPDS.2025.3591010

12. Wang S. et al. Adaptive Federated
Learning in Resource Constrained Edge
Computing Systems. IEEE Journal on
Selected Areas in Communications. 2019.
Vol. 37, No. 6. P. 1205–1221.
 DOI: 10.1109/JSAC.2019.2904348

13. Gerontas A., Peristeras V.,
Tambouris E., Kaliva E., Magnisalis I.,
Tarabanis K. Public Service Models: A
Systematic Literature Review and Synthesis.
IEEE Transactions on Emerging Topics in
Computing. 2021. Vol. 9, No. 2. P. 637–648.
DOI: 10.1109/TETC.2019.2939485

14. Huang L., Bi S., Zhang Y.-J. A.
Deep Reinforcement Learning for Online

Computation Offloading in Wireless
Powered Mobile-Edge Computing Networks.
IEEE Transactions on Mobile Computing.
2020. Vol. 19, No. 11. P. 2581–2593. DOI:
10.1109/TMC.2019.2928811

15. Ouyang T., Li R., Chen X., Zhou
Z., Tang X. Adaptive User-managed Service
Placement for Mobile Edge Computing: An
Online Learning Approach. IEEE
INFOCOM 2019. Paris, 2019. P. 1468–1476.
DOI: 10.1109/INFOCOM.2019.8737560

16. Behmandpoor P., Patrinos P.,
Moonen M. Federated Learning Based
Resource Allocation for Wireless
Communication Networks. EUSIPCO 2022.
Belgrade, 2022. P. 1656–1660. DOI:
10.23919/EUSIPCO55093.2022.9909708

17. Zhou Z., Chen X., Li E., Zeng L.,
Luo K., Zhang J. Edge Intelligence: Paving
the Last Mile of Artificial Intelligence With
Edge Computing. Proceedings of the IEEE.
2019. Vol. 107, No. 8. P. 1738–1762. DOI:
10.1109/JPROC.2019.2918951

18. Wang X., Han Y., Wang C., Zhao
Q., Chen X., Chen M. In-Edge AI:
Intelligentizing Mobile Edge Computing,
Caching and Communication by Federated
Learning. IEEE Network. 2019. Vol. 33,
No. 5. P. 156–165.
DOI: 10.1109/MNET.2019.1800286

19. Liu Y., Mao Y., Shang X., Liu Z.,
Yang Y. Energy-Aware Online Task
Offloading and Resource Allocation for
Mobile Edge Computing. IEEE ICDCS
2023. Hong Kong, 2023. P. 339–349.
DOI: 10.1109/ICDCS57875.2023.00073

20. Danylchuk H. B. (ed.). Advances
in machine learning for the innovation
economy. Proceedings of the 10th
International Conference on Monitoring,
Modeling & Management of Emergent
Economy (M3E2-MLPEED 2022). CEUR
Workshop Proceedings. 2023. Vol. 3465. 250
p. URL: https://ceur-ws.org/Vol-3465/

Проблеми інформатизації та управління, 3(83)`2025 103

Mukhin V.Ye., Kulyk V.O., Yaroviy O.V., Kutsenko І.S.

COMPARATIVE ANALYSIS OF CONVOLUTIONAL AND MULTILAYER PERCEPTRON
NEURAL NETWORKS FOR RESOURCE ALLOCATION IN DISTRIBUTED COMPUTING
SYSTEMS

Efficient resource distribution in heterogeneous distributed computing systems requires
intelligent node selection mechanisms capable of adapting to dynamic system conditions. This
research presents a comparative evaluation of Convolutional Neural Network (CNN) and
Multilayer Perceptron (MLP) architectures for binary node suitability classification in
distributed task scheduling environments. The study employs five synthetic datasets ranging
from 100 to 2000 instances, with each node characterized by four critical attributes:
performance, security level, baud rate, and reliability. Experimental results demonstrate that
the MLP architecture achieves validation accuracy between 91% and 98.8% with high
consistency across dataset sizes, while the CNN architecture shows fluctuating performance
ranging from 85% to 94%. The key finding reveals that MLP architectures outperform CNNs
for tabular node data due to better alignment with unstructured attribute relationships, as
fully connected layers naturally handle unordered features without imposing spatial locality
assumptions. This empirical analysis provides practical guidance for architecture selection in
AI-based resource schedulers, demonstrating that simpler architectures can outperform more
complex ones when appropriately matched to problem structure. The findings contribute
evidence-based recommendations for distributed systems practitioners implementing neural
network-based scheduling solutions.

Keywords: distributed computing systems; resource allocation; Multilayer Perceptron
(MLP); Convolutional Neural Network (CNN); task scheduling; node selection; binary
classification; tabular data processing.

Мухін В.Є., Кулик В.О., Яровий О.В., Куценко І.С.

ПОРІВНЯЛЬНИЙ АНАЛІЗ ЗГОРТКОВИХ НЕЙРОННИХ МЕРЕЖ ТА БАГАТО-
ШАРОВИХ ПЕРЦЕПТРОНІВ ДЛЯ РОЗПОДІЛУ РЕСУРСІВ У РОЗПОДІЛЕНИХ
ОБЧИСЛЮВАЛЬНИХ СИСТЕМАХ

Ефективний розподіл ресурсів у гетерогенних розподілених обчислювальних системах
потребує інтелектуальних механізмів вибору вузлів, здатних адаптуватися до
динамічних умов системи. Це дослідження представляє порівняльну оцінку архітектур
згорткової нейронної мережі (CNN) та багатошарового перцептрона (MLP) для
бінарної класифікації придатності вузлів у середовищах розподіленого планування
задач. У роботі використано п’ять синтетичних наборів даних обсягом від 100 до
2000 записів, де кожен вузол описується чотирма ключовими атрибутами:
продуктивність, рівень безпеки, швидкість передавання даних (baud rate) та
надійність. Експериментальні результати показують, що архітектура MLP досягає
точності валідації між 91% та 98,8% із високою стабільністю для різних обсягів
даних, тоді як архітектура CNN демонструє коливання результатів у межах 85–94%.
Основний висновок полягає в тому, що архітектури MLP переважають CNN для
табличних даних вузлів завдяки кращій відповідності структурі неупорядкованих
атрибутів, оскільки повнозв’язні шари природно працюють із неструктурованими
ознаками без накладання припущень про просторову локальність. Це емпіричне
дослідження надає практичні рекомендації щодо вибору архітектур у ресурсних
планувальниках на основі ШІ, демонструючи, що простіші моделі можуть
перевершувати складніші, якщо вони краще відповідають природі задачі. Отримані
результати роблять внесок у формування рекомендацій для фахівців з розподілених
систем, які впроваджують нейронні мережі у процеси планування.

Ключові слова: розподілені обчислювальні системи; розподіл ресурсів;
багатошаровий перцептрон; згорткові нейронні мережі; планування завдань; вибір
вузлів; бінарна класифікація; обробка табличних даних.

Reports. 2025. Vol. 15, No. 1. URL:
https://www.nature.com/

articles/s41598-025-00153-9
7. Lead Data Engineer S. J. Efficient

Orchestration of AI Workloads: Data
Engineering Solutions for Distributed Cloud
Computing. Zenodo. 2025. URL:
https://zenodo.org/records/15053639

8. Erukulla N. Efficient Workload
Allocation and Scheduling Strategies for AI-
Intensive Tasks in Cloud Infrastructures.
PowerTech Journal. 2023. Vol. 47, No. 4.
URL: https://powertechjournal.com
/index.php/journal/article/view/160

9. Wang D., Wang W., Gao H., Zhang
Z., Han Z. Delay-Optimal Computation
Offloading in Large-Scale Multi-Access
Edge Computing Using Mean Field Game.
IEEE Transactions on Wireless
Communications. 2024. Vol. 23, No. 3. P.
1684–1698.
DOI: 10.1109/TWC.2023.3291198

10. Qiu X., Zhang W., Chen W., Zheng
Z. Distributed and Collective Deep
Reinforcement Learning for Computation
Offloading: A Practical Perspective. IEEE
Transactions on Parallel and Distributed
Systems. 2021. Vol. 32, No. 5. P. 1085–1101.
DOI: 10.1109/TPDS.2020.3042599

11. Wu Y. et al. Task Scheduling in
Geo-Distributed Computing: A Survey. IEEE
Transactions on Parallel and Distributed
Systems. 2025. Vol. 36, No. 10. P. 2073–
2088.
 DOI: 10.1109/TPDS.2025.3591010

12. Wang S. et al. Adaptive Federated
Learning in Resource Constrained Edge
Computing Systems. IEEE Journal on
Selected Areas in Communications. 2019.
Vol. 37, No. 6. P. 1205–1221.
 DOI: 10.1109/JSAC.2019.2904348

13. Gerontas A., Peristeras V.,
Tambouris E., Kaliva E., Magnisalis I.,
Tarabanis K. Public Service Models: A
Systematic Literature Review and Synthesis.
IEEE Transactions on Emerging Topics in
Computing. 2021. Vol. 9, No. 2. P. 637–648.
DOI: 10.1109/TETC.2019.2939485

14. Huang L., Bi S., Zhang Y.-J. A.
Deep Reinforcement Learning for Online

Computation Offloading in Wireless
Powered Mobile-Edge Computing Networks.
IEEE Transactions on Mobile Computing.
2020. Vol. 19, No. 11. P. 2581–2593. DOI:
10.1109/TMC.2019.2928811

15. Ouyang T., Li R., Chen X., Zhou
Z., Tang X. Adaptive User-managed Service
Placement for Mobile Edge Computing: An
Online Learning Approach. IEEE
INFOCOM 2019. Paris, 2019. P. 1468–1476.
DOI: 10.1109/INFOCOM.2019.8737560

16. Behmandpoor P., Patrinos P.,
Moonen M. Federated Learning Based
Resource Allocation for Wireless
Communication Networks. EUSIPCO 2022.
Belgrade, 2022. P. 1656–1660. DOI:
10.23919/EUSIPCO55093.2022.9909708

17. Zhou Z., Chen X., Li E., Zeng L.,
Luo K., Zhang J. Edge Intelligence: Paving
the Last Mile of Artificial Intelligence With
Edge Computing. Proceedings of the IEEE.
2019. Vol. 107, No. 8. P. 1738–1762. DOI:
10.1109/JPROC.2019.2918951

18. Wang X., Han Y., Wang C., Zhao
Q., Chen X., Chen M. In-Edge AI:
Intelligentizing Mobile Edge Computing,
Caching and Communication by Federated
Learning. IEEE Network. 2019. Vol. 33,
No. 5. P. 156–165.
DOI: 10.1109/MNET.2019.1800286

19. Liu Y., Mao Y., Shang X., Liu Z.,
Yang Y. Energy-Aware Online Task
Offloading and Resource Allocation for
Mobile Edge Computing. IEEE ICDCS
2023. Hong Kong, 2023. P. 339–349.
DOI: 10.1109/ICDCS57875.2023.00073

20. Danylchuk H. B. (ed.). Advances
in machine learning for the innovation
economy. Proceedings of the 10th
International Conference on Monitoring,
Modeling & Management of Emergent
Economy (M3E2-MLPEED 2022). CEUR
Workshop Proceedings. 2023. Vol. 3465. 250
p. URL: https://ceur-ws.org/Vol-3465/

