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using signature analysis. The method is integrated into the SDN control plane using CBQ and 
WRED mechanisms for adaptive queue management. Experimental studies in the Mininet + 
Floodlight environment confirmed that the combined Hurst–DPI approach provides an 
increase in attack detection accuracy up to 94%, a reduction in response time by 35%, and a 
reduction in false positives by 67% compared to traditional methods. The proposed algorithm 
allows to increase the fault tolerance of SDN networks and maintain the quality of service of 
critical services in the event of DDoS load. 
Keywords: software-defined networks, DDoS, Hurst index, DPI, QoS, fault tolerance. 
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1. Introduction
1.1.Problem Context and Mo-

tivation 
Distributed computing systems 

increasingly rely on heterogeneous nodes 
with varying capabilities, ranging from high-
performance servers to resource-constrained 
edge devices. Efficient task allocation in 
such environments requires sophisticated 
mechanisms capable of matching task 
requirements to node characteristics while 
accounting for dynamic system conditions. 
Traditional scheduling algorithms employ 
fixed rules and heuristics that prove unable 
to adapt to changing workload patterns, 
network conditions, and resource 
availability. Machine learning approaches 
offer data-driven solutions that learn from 
historical patterns and node telemetry, 
enabling adaptive decision-making in 
complex distributed environments. Neural 

networks have emerged as particularly 
promising tools for capturing complex 
relationships between node attributes and 
task execution success. However, 
architecture selection significantly impacts 
not only prediction performance but also 
computational efficiency, training 
requirements, and deployment feasibility in 
production environments. Despite growing 
interest in AI-based scheduling, limited 
research exists comparing different neural 
architectures specifically for resource 
allocation tasks. This study addresses this 
gap through systematic comparison of 
Convolutional Neural Network (CNN) and 
Multilayer Perceptron (MLP) architectures 
for node suitability classification in 
distributed computing systems. [15] 

1.2. Research Objectives and 
Scope 

The primary goal of this research is to 
evaluate CNN and MLP performance for 
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Кулаков Ю. О., Обозний Д. М.
МЕТОД ВИЯВЛЕННЯ DDOS-АТАК У ПРОГРАМНО ВИЗНАЧЕНИХМЕРЕЖАХ
НА ОСНОВІ ІНДЕКСУ ХЕРСТА ТА ТЕХНОЛОГІЇ ГЛИБИННОГО АНАЛІЗУ
ПАКЕТІВ

У статті розглянуто проблему своєчасного виявлення DDoS-атак у програмно
визначених мережах (SDN), де централізована архітектура контролера створює
критичну точку відмови в умовах зростання обсягів трафіку. Запропоновано
комбінований метод детектування, що поєднує поведінковий аналіз трафіку за
індексом Херста з вибірковою глибокою інспекцією пакетів (DPI). Підхід передбачає
динамічне визначення аномалій на основі зниження показника самоподібності трафіку
та подальше уточнення типу атаки за допомогою сигнатурного аналізу. Метод
інтегровано у контрольну площину SDN з використанням механізмів CBQ і WRED для
адаптивного керування чергами. Експериментальні дослідження в середовищі Mininet
+ Floodlight підтвердили, що комбінований Hurst–DPI підхід забезпечує підвищення
точності виявлення атак до 94 %, скорочення часу реакції на 35 % і зменшення хибних
спрацьовувань на 67 % порівняно з традиційними методами. Запропонований алгоритм
дозволяє підвищити відмовостійкість SDN-мереж і зберегти якість обслуговування
критичних сервісів у разі DDoS-навантаження.

Ключові слова: програмно визначені мережі, DDoS, індекс Херста, DPI, QoS, 
відмовостійкість.

Kulakov Y. O., Oboznyi D. M.
METHOD FOR DETECTION OF DDOS ATTACKS IN SOFTWARE-DEFINED 
NETWORKS BASED ON THE HURST INDEX AND DEEP PACKET INSPECTION
TECHNOLOGY 

The article considers the problem of timely detection of DDoS attacks in software-
defined networks (SDN), where the centralized controller architecture creates a critical point
of failure in conditions of increasing traffic volumes. A combined detection method is 
proposed, which combines behavioral analysis of traffic using the Hurst index with selective
deep packet inspection (DPI). The approach involves dynamic detection of anomalies based
on a decrease in the traffic self-similarity index and further refinement of the attack type 
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binary node suitability classification across 
varying dataset sizes and system conditions. 
The study assesses accuracy, consistency, 
and computational efficiency metrics to 
provide comprehensive understanding of 
each architecture’s strengths and limitations. 
This investigation examines how architecture 
choice affects model behavior with both 
limited and abundant training data, reflecting 
practical constraints faced during initial 
deployment versus mature system operation. 
The research provides practical 
recommendations for distributed systems 
practitioners selecting neural architectures 
for resource scheduling implementations. 
The study focuses on binary classification 
using four standard node attributes: 
performance (computational capacity), 
security level (protection mechanisms), baud 
rate (communication speed), and reliability 
(historical uptime). Experiments employ 
controlled synthetic datasets to isolate 
architecture effects from data collection 
artifacts and system-specific biases. The 
article structure proceeds as follows: Section 
2 reviews related work and formulates the 
classification problem; Section 3 describes 
the proposed MLP and CNN architectures; 
Section 4 presents experimental setup and 
results; Section 5 discusses findings and 
practical implications; Section 6 concludes 
with key insights and future research 
directions. [16] 

2. Related Work and Problem
Formulation 

2.1. Traditional and AI-Based 
Resource Allocation 

Classical resource allocation methods 
in distributed systems include centralized 
scheduling algorithms, load balancing 
techniques, and heuristic-based approaches 
that rely on predefined rules and static 
priority schemes [1-3]. Recent years have 
witnessed a significant shift toward neural 
network-based approaches for adaptive task 
distribution, driven by the ability of deep 
learning models to capture complex patterns 
from historical execution data and real-time 
node telemetry [4-6]. Deep learning 
architectures enable learning intricate 

relationships between node characteristics, 
workload patterns, and task execution 
outcomes without requiring explicit feature 
engineering or domain-specific rule 
formulation. Reinforcement learning 
techniques have been successfully applied 
for dynamic offloading decisions in edge 
computing environments, where agents learn 
optimal policies through interaction with the 
distributed system. However, most prior 
work in AI-based scheduling adopts a single 
neural architecture without systematic 
justification or comparative evaluation of 
alternative designs. This gap is particularly 
evident in the domain of tabular resource 
data, where the suitability of different neural 
architectures remains under-explored. The 
present work contributes empirical evidence 
for architecture selection in this domain, 
providing systematic comparison of CNN 
and MLP approaches specifically tailored to 
node classification problems in distributed 
computing environments. [1, 2] 

2.2. Problem Statement 
The node suitability classification 

problem can be formally stated as follows: 
given current node attributes, classify each 
node as suitable or unsuitable for executing a 
specific task. The input consists of four node 
features that characterize operational 
capabilities and reliability: performance 
representing computational capacity 
measured in processing units, security 
indicating the protection level of 
implemented security mechanisms, baud rate 
quantifying communication speed for data 
transfer operations, and reliability reflecting 
historical uptime and availability patterns. 
The output is a binary label indicating node 
suitability for task assignment, with positive 
classification signifying that the node meets 
all necessary requirements for successful 
task execution. Training data for the 
classification model is collected from 
continuous system monitoring, where node 
attributes are periodically sampled and 
labeled based on subsequent task execution 
outcomes. The task is formulated as a 
supervised binary classification problem, 
where the neural network learns a mapping 
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from the four-dimensional attribute space to 
the binary decision space. The trained model 
must demonstrate robust generalization to 
unseen node states encountered during 
deployment, as the distributed system 
continuously evolves with changing 
workloads, network conditions, and resource 
availability patterns. [3, 17] 

3. Proposed Neural Network
Architectures 

3.1. System Overview 
The proposed node classification system 
implements an end-to-end pipeline 
consisting of four primary stages: monitoring 
agents collect node attributes from 
distributed computing nodes, data 
preprocessing normalizes attribute values to 
the [0,1] range to ensure consistent neural 
network input, the trained classifier performs 
inference to predict suitability probability for 
each candidate node, and the scheduler 
utilizes these predictions to assign incoming 
tasks to the highest-scoring available nodes. 
Node attributes are collected in real-time 
through continuous monitoring infrastructure 
that samples performance metrics, security 
configurations, communication capabilities, 
and reliability statistics at regular intervals. 
The trained neural network classifier 
processes these normalized attributes and 
produces probability scores indicating the 
likelihood of successful task execution on 
each node. The scheduling system leverages 
these predictions by maintaining a ranked list 
of nodes, enabling rapid task assignment 
decisions that optimize resource utilization 
while maintaining quality-of-service 
requirements. [2, 18, 19] 

3.2. Multilayer Perceptron Archi-
tecture 

The MLP architecture is designed with 
the rationale that fully connected layers can 
capture all possible interactions between node 
attributes without imposing structural 
assumptions on the data. The network 
topology consists of an input layer accepting 
four normalized features, followed by three 
hidden layers with progressively decreasing 
dimensions: the first hidden layer contains 64 
neurons with ReLU activation, the second 

contains 32 neurons with ReLU activation, and 
the third contains 16 neurons with ReLU 
activation, culminating in an output layer with 
a single neuron using sigmoid activation to 
produce binary classification probabilities. 
Dropout regularization with probability 0.3 is 
applied after the first and second hidden layers 
to prevent overfitting by randomly deactivating 
neurons during training. 

Figure 1: System architecture pipeline showing 
the flow from monitoring through preprocessing, 

neural network inference, and scheduling 
decision to final task assignment. 

The complete architecture contains 
approximately 5,500 trainable parameters, 
calculated as the sum of weight matrices and 
bias vectors across all layers. Training employs 
the Adam optimizer with learning rate 0.001, 
binary cross-entropy loss function appropriate 
for binary classification, batch size of 32 
samples, and early stopping with patience of 
15 epochs to halt training when validation 
performance plateaus. The combination of 
dropout regularization and early stopping 

binary node suitability classification across
varying dataset sizes and system conditions.
The study assesses accuracy, consistency,
and computational efficiency metrics to
provide comprehensive understanding of
each architecture’s strengths and limitations.
This investigation examines how architecture
choice affects model behavior with both
limited and abundant training data, reflecting 
practical constraints faced during initial 
deployment versus mature system operation.
The research provides practical
recommendations for distributed systems
practitioners selecting neural architectures
for resource scheduling implementations. 
The study focuses on binary classification
using four standard node attributes: 
performance (computational capacity),
security level (protection mechanisms), baud 
rate (communication speed), and reliability
(historical uptime). Experiments employ
controlled synthetic datasets to isolate
architecture effects from data collection
artifacts and system-specific biases. The 
article structure proceeds as follows: Section 
2 reviews related work and formulates the 
classification problem; Section 3 describes
the proposed MLP and CNN architectures;
Section 4 presents experimental setup and
results; Section 5 discusses findings and
practical implications; Section 6 concludes
with key insights and future research
directions. [16]

2. Related Work and Problem
Formulation 

2.1. Traditional and AI-Based 
Resource Allocation

Classical resource allocation methods 
in distributed systems include centralized 
scheduling algorithms, load balancing 
techniques, and heuristic-based approaches
that rely on predefined rules and static 
priority schemes [1-3]. Recent years have
witnessed a significant shift toward neural
network-based approaches for adaptive task
distribution, driven by the ability of deep
learning models to capture complex patterns 
from historical execution data and real-time
node telemetry [4-6]. Deep learning 
architectures enable learning intricate

relationships between node characteristics,
workload patterns, and task execution
outcomes without requiring explicit feature 
engineering or domain-specific rule 
formulation. Reinforcement learning 
techniques have been successfully applied
for dynamic offloading decisions in edge
computing environments, where agents learn
optimal policies through interaction with the 
distributed system. However, most prior
work in AI-based scheduling adopts a single
neural architecture without systematic
justification or comparative evaluation of
alternative designs. This gap is particularly
evident in the domain of tabular resource 
data, where the suitability of different neural
architectures remains under-explored. The 
present work contributes empirical evidence
for architecture selection in this domain,
providing systematic comparison of CNN 
and MLP approaches specifically tailored to
node classification problems in distributed
computing environments. [1, 2]

2.2. Problem Statement 
The node suitability classification

problem can be formally stated as follows:
given current node attributes, classify each
node as suitable or unsuitable for executing a
specific task. The input consists of four node
features that characterize operational
capabilities and reliability: performance
representing computational capacity
measured in processing units, security
indicating the protection level of
implemented security mechanisms, baud rate
quantifying communication speed for data
transfer operations, and reliability reflecting 
historical uptime and availability patterns.
The output is a binary label indicating node
suitability for task assignment, with positive 
classification signifying that the node meets 
all necessary requirements for successful
task execution. Training data for the
classification model is collected from
continuous system monitoring, where node
attributes are periodically sampled and
labeled based on subsequent task execution
outcomes. The task is formulated as a 
supervised binary classification problem,
where the neural network learns a mapping 
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effectively prevents overfitting while enabling 
the model to learn complex attribute 
interactions. The relatively simple architecture 
facilitates rapid training convergence and 
efficient deployment in resource-constrained 
environments where inference latency is 
critical. [2, 4, 20] 

Figure 2: MLP architecture diagram showing 
layer configuration with dimensions, activation 
functions, and regularization techniques. Total 

parameters: ~5,500. 

3.3. Convolutional Neural Network 
Architecture 

The CNN architecture is designed to 
perform hierarchical feature extraction 
through convolution operations that identify 
local patterns within the attribute sequence. 

The network begins by reshaping the 
four-dimensional input vector into shape 
(4,1) to enable one-dimensional convolution, 
followed by the first convolutional layer with 
64 filters and kernel size 2, batch 
normalization for training stability, the 
second convolutional layer with 32 filters 
and kernel size 2, another batch 
normalization layer, a flattening operation to 
convert feature maps into a one-dimensional 
vector, two fully connected layers with 64 
and 32 neurons respectively using ReLU 
activation, dropout regularization with 
probability 0.4 applied after the first dense 
layer, and an output neuron with sigmoid 
activation for binary classification.  

The complete CNN architecture 
contains approximately 3,800 trainable 
parameters, fewer than the MLP due to 
parameter sharing inherent in convolutional 
operations where the same filter weights are 
applied across different positions in the input. 

Training configuration remains 
identical to the MLP (Adam optimizer with 
learning rate 0.001, binary cross-entropy 
loss, batch size 32, early stopping with 
patience 15) to ensure fair comparison 
between architectures. The convolutional 
layers attempt to extract local patterns and 
dependencies from sequential arrangement 
of node attributes, while batch normalization 
stabilizes training dynamics by reducing 
internal covariate shift. Despite having fewer 
parameters due to weight sharing in 
convolutional operations, the CNN’s 
inductive bias toward spatial locality may 
not align optimally with the unordered nature 
of tabular node attributes. [5] 

4. Experimental Setup and
Results 

4.1. Dataset and Methodology 
The experimental evaluation employs 

five synthetic datasets containing 100, 500, 
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1000, 1500, and 2000 instances respectively, 
designed to assess architecture performance 
across varying data availability conditions. Each 
dataset instance consists of four node attributes 
and one binary suitability label, representing 
realistic distributed computing scenarios. Node 
attributes are generated from appropriate 
probability distributions: performance values 
follow a uniform distribution simulating 
heterogeneous computational capabilities, 
security levels are drawn from a beta 
distribution reflecting varying protection 
implementations, baud rates follow a normal 
distribution representing typical network 
bandwidth variations, and reliability scores use 
a beta distribution modeling historical uptime 
patterns. Binary labels are assigned through a 
weighted threshold function that combines the 
four attributes with configurable weights, with 
10% label noise introduced to simulate real-
world measurement uncertainty and 
classification ambiguity. Training and 
validation data are split using an 80-20 ratio 
with stratification to maintain class balance 
across both sets, ensuring representative 
evaluation of model performance. Each 
architecture undergoes training three times 
with different random seeds, with results 
averaged to account for initialization 
sensitivity and provide robust performance 
estimates. Primary evaluation metrics include 
accuracy as the main performance indicator, 
along with precision, recall, F1-score for 
comprehensive classification assessment, and 
training time to evaluate computational 
efficiency. All experiments were conducted in 
Python 3.10 environment.  

Training and evaluation were performed 
on a workstation equipped with an AMD 
Ryzen 9 5900X CPU, 32 GB of RAM, and an 
NVIDIA RTX 4070 GPU with 12 GB VRAM. 
Random seeds were fixed across runs to ensure 
reproducibility of all results. 

The MLP architecture demonstrates 
consistently strong performance across all 
dataset sizes, achieving validation accuracies 
of 91% on 100 instances, 97.5% on 500 
instances, 98.8% on 1000 instances, 98.5% 
on 1500 instances, and 98.2% on 2000 
instances. Performance exhibits consistent 

improvement with increasing training data 
availability, reaching a plateau above 1000 
instances where additional data provides 
diminishing marginal returns. The 
architecture demonstrates minimal 
overfitting characteristics, with training-
validation accuracy gaps remaining below 
1% across all dataset sizes, indicating 
effective generalization enabled by dropout 
regularization and early stopping 
mechanisms. Both precision and recall 
metrics exceed 90% across all experiments, 
demonstrating balanced classification 
performance without significant bias toward 
either class. 

Figure 3: CNN architecture diagram showing 
convolutional layers with batch normalization, 

followed by dense layers with dropout 
regularization. Total parameters: ~3,800. 

effectively prevents overfitting while enabling
the model to learn complex attribute
interactions. The relatively simple architecture
facilitates rapid training convergence and
efficient deployment in resource-constrained
environments where inference latency is
critical. [2, 4, 20] 

Figure 2: MLP architecture diagram showing
layer configuration with dimensions, activation 
functions, and regularization techniques. Total 

parameters: ~5,500.

3.3. Convolutional Neural Network
Architecture

The CNN architecture is designed to
perform hierarchical feature extraction 
through convolution operations that identify
local patterns within the attribute sequence. 

The network begins by reshaping the
four-dimensional input vector into shape 
(4,1) to enable one-dimensional convolution, 
followed by the first convolutional layer with
64 filters and kernel size 2, batch
normalization for training stability, the
second convolutional layer with 32 filters
and kernel size 2, another batch
normalization layer, a flattening operation to
convert feature maps into a one-dimensional
vector, two fully connected layers with 64
and 32 neurons respectively using ReLU
activation, dropout regularization with 
probability 0.4 applied after the first dense
layer, and an output neuron with sigmoid 
activation for binary classification. 

The complete CNN architecture 
contains approximately 3,800 trainable
parameters, fewer than the MLP due to
parameter sharing inherent in convolutional
operations where the same filter weights are 
applied across different positions in the input.

Training configuration remains
identical to the MLP (Adam optimizer with
learning rate 0.001, binary cross-entropy
loss, batch size 32, early stopping with
patience 15) to ensure fair comparison
between architectures. The convolutional
layers attempt to extract local patterns and
dependencies from sequential arrangement
of node attributes, while batch normalization 
stabilizes training dynamics by reducing 
internal covariate shift. Despite having fewer
parameters due to weight sharing in
convolutional operations, the CNN’s 
inductive bias toward spatial locality may
not align optimally with the unordered nature
of tabular node attributes. [5] 

4. Experimental Setup and
Results

4.1. Dataset and Methodology
The experimental evaluation employs

five synthetic datasets containing 100, 500, 
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4.2. MLP Performance Results 
Training time scales approximately 

linearly with dataset size, ranging from 2 
seconds for the smallest dataset to 18 
seconds for the largest, reflecting efficient 
gradient computation in fully connected 
architectures. The consistent performance 
trajectory and tight confidence intervals 
across multiple runs demonstrate the MLP’s 
stability and reliability for node 
classification tasks. 

Table 1. Comparative performance results 
showing validation accuracy and training time 

for MLP and CNN architectures across five 
dataset scales. MLP demonstrates superior and 
more consistent accuracy with faster training 

times. 
Datas

et 
Size 

MLP 
Accu-
racy 

CNN 
Accu-
racy 

MLP 
Trai-
ning 
Time 

CNN 
Trai-
ning 
Time 

100 
rows 

91.0% 85.0% 2s 4s 

500 
rows 

97.5% 91.0% 5s 9s 

1000 
rows 

98.8% 92.0% 9s 16s 

1500 
rows 

98.5% 94.0% 13s 24s 

2000 
rows 

98.2% 93.0% 18s 32s 

4.3. CNN Performance Results 
The CNN architecture achieves 

validation accuracies of 85% on 100 
instances, 91% on 500 instances, 92% on 
1000 instances, 94% on 1500 instances, and 
93% on 2000 instances, showing 
competitive but less consistent performance 
compared to the MLP. Performance exhibits 
non-monotonic behavior with a notable 
fluctuation at 1000 instances, followed by 
improvement at 1500 instances and slight 
degradation at 2000 instances, suggesting 
sensitivity to dataset characteristics or 
training dynamics. Experimental runs 
display greater variance across different 
random seeds, with standard deviations 2-3 
times larger than MLP results, indicating 

sensitivity to weight initialization and 
potential difficulty in finding stable 
optimization trajectories. Training time 
proves 1.8 times slower than the MLP on 
average, ranging from 4 seconds for 100 
instances to 32 seconds for 2000 instances, 
despite having fewer total parameters due to 
computational overhead of convolution 
operations and batch normalization. 
Precision metrics remain comparable to 
MLP performance, but recall exhibits higher 
variability, suggesting inconsistent 
sensitivity to positive class instances across 
different training conditions. 

4.4. Comparative Analysis 
Comprehensive comparison reveals 

that the MLP architecture outperforms the 
CNN on three of five datasets, with 
statistically significant advantages on the 
1000-instance (p=0.031) and 1500-instance 
(p=0.018) datasets based on paired t-tests 
across multiple runs.  

Table 2. Comprehensive performance 
comparison across all architectures averaged 
over five dataset sizes. Metrics include model 

complexity (parameters), accuracy, classification 
quality (precision, recall, F1), and computational 
efficiency (training time). MLP achieves the best 

accuracy-efficiency trade-off. 

Arch
itectu

re 

Par
am
e-

ters 

Avg 
Ac 

cura
cy 

Pre
ci-
sio
n 

Reca
ll 

F1-
Scor

e 

Avg 
Train
ing 

Time 
MLP ~5,

500 
96.6
% 

94.2
% 

93.8
% 

94.0 
% 

9.4s 

CNN ~3,
800 

91.0
% 

91.5
% 

88.3
% 

89.8 
% 

17.0s 

Logisti
c Reg 

~5 79.2
% 

76.8
% 

74.5
% 

75.6 
% 

0.8s 

Ran-
dom 

Forest 

~1,
200 

88.4
% 

86.9
% 

85.2
% 

86.0 
% 

3.2s 

The MLP consistently demonstrates 
tighter confidence intervals with standard 
deviations averaging 0.8%, compared to the 
CNN’s 2.1%, indicating superior training 
stability and reproducibility. Both neural 
architectures significantly exceed traditional 
baseline methods, with logistic regression 
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achieving 75-83% accuracy and random forest 
reaching 85-92% accuracy on the same 
datasets, validating the value of neural network 
approaches for this classification task.  

Computational efficiency analysis favors 
the MLP architecture, offering faster training 
convergence and comparable inference latency 
(0.5ms per instance for MLP versus 0.8ms for 
CNN), making it more suitable for resource-
constrained deployment scenarios. The CNN’s 
parameter efficiency advantage (3,800 
parameters versus 5,500 for MLP) does not 
translate into practical benefits for tabular node 
data, as the convolutional operations’ spatial 
locality assumptions prove misaligned with the 
unordered nature of node attributes. The 
empirical results support the hypothesis that 
architecture selection must consider data 
structure characteristics, with fully connected 
networks demonstrating superior performance 
for tabular feature spaces lacking inherent 
spatial or temporal ordering. [6, 7] 

5. Discussion
5.1. Interpretation of Results 
The MLP architecture’s consistent 

superior performance stems from 
fundamental alignment between its 
architectural design and the structure of 
tabular node attribute data. Fully connected 
layers naturally handle unordered attributes 
by learning arbitrary interaction patterns 
between features without imposing 
structural assumptions about spatial or 
temporal relationships. In contrast, the 
CNN architecture is explicitly designed for 
data exhibiting spatial locality, such as 
images where neighboring pixels contain 
correlated information, or time series 
where adjacent samples share temporal 
dependencies. Convolutional filters seek 
local patterns within sequential arran-
gements of features, an operation that 
proves inappropriate for independent node 
attributes where permuting feature order 
does not change semantic meaning. The 
fluctuating CNN performance across 
dataset sizes suggests difficulty in finding 
stable feature representations when the 
inductive bias conflicts with data structure. 
Dataset size effects reveal that CNNs may 

require specific data thresholds or 
characteristics to overcome architectural 
misalignment, whereas MLPs demonstrate 
graceful performance scaling with 
consistent improvement trajectories. The 
MLP’s architectural simplicity facilitates 
more straightforward interpretability, 
debugging, and hyperparameter tuning 
compared to the multi-stage hierarchical 
processing in CNNs. These results 
generalize to similar resource allocation 
problems involving structured tabular 
attributes without inherent ordering, 
suggesting that architecture selection must 
prioritize alignment with data 
characteristics over architectural sophi-
stication. 

5.2. Practical Recommendations 
Distributed systems practitioners 

implementing node classification with 
tabular attributes should prefer MLP 
architectures over CNNs due to superior 
accuracy, consistency, and computational 
efficiency demonstrated in this study. CNNs 
should only be considered when input data 
exhibits inherent spatial structure (such as 
node attributes organized in grid topologies) 
or temporal patterns (such as time-windowed 
performance metrics) that justify 
convolutional operations. Development 
resources should be invested in tuning and 
optimizing MLP architectures rather than 
attempting to force CNN architectures to 
work with fundamentally mismatched data 
structures. Ensemble approaches combining 
multiple MLPs or integrating MLPs with 
decision trees may provide additional 
accuracy improvements when maximum 
performance is critical for production 
deployments. System architects must balance 
model complexity with deployment 
constraints including training time, inference 
latency, memory footprint, and update 
frequency when selecting architectures for 
resource-constrained environments. The 
fundamental principle of matching 
architecture inductive biases to problem 
characteristics should guide selection 
decisions, with empirical validation on 
representative data preferred over adopting 

4.2. MLP Performance Results 
Training time scales approximately

linearly with dataset size, ranging from 2
seconds for the smallest dataset to 18
seconds for the largest, reflecting efficient
gradient computation in fully connected
architectures. The consistent performance
trajectory and tight confidence intervals
across multiple runs demonstrate the MLP’s
stability and reliability for node
classification tasks.

Table 1. Comparative performance results 
showing validation accuracy and training time 

for MLP and CNN architectures across five 
dataset scales. MLP demonstrates superior and 
more consistent accuracy with faster training

times. 
Datas

et 
Size

MLP 
Accu-
racy

CNN 
Accu-
racy

MLP 
Trai-
ning
Time

CNN 
Trai-
ning
Time

100 
rows 

91.0% 85.0% 2s 4s 

500 
rows 

97.5% 91.0% 5s 9s 

1000 
rows 

98.8% 92.0% 9s 16s 

1500 
rows 

98.5% 94.0% 13s 24s 

2000 
rows 

98.2% 93.0% 18s 32s 

4.3. CNN Performance Results 
The CNN architecture achieves

validation accuracies of 85% on 100 
instances, 91% on 500 instances, 92% on
1000 instances, 94% on 1500 instances, and
93% on 2000 instances, showing
competitive but less consistent performance 
compared to the MLP. Performance exhibits
non-monotonic behavior with a notable 
fluctuation at 1000 instances, followed by
improvement at 1500 instances and slight
degradation at 2000 instances, suggesting 
sensitivity to dataset characteristics or
training dynamics. Experimental runs
display greater variance across different
random seeds, with standard deviations 2-3
times larger than MLP results, indicating

sensitivity to weight initialization and
potential difficulty in finding stable
optimization trajectories. Training time
proves 1.8 times slower than the MLP on
average, ranging from 4 seconds for 100
instances to 32 seconds for 2000 instances,
despite having fewer total parameters due to
computational overhead of convolution
operations and batch normalization.
Precision metrics remain comparable to
MLP performance, but recall exhibits higher
variability, suggesting inconsistent
sensitivity to positive class instances across
different training conditions.

4.4. Comparative Analysis
Comprehensive comparison reveals

that the MLP architecture outperforms the
CNN on three of five datasets, with 
statistically significant advantages on the
1000-instance (p=0.031) and 1500-instance 
(p=0.018) datasets based on paired t-tests 
across multiple runs.  

Table 2. Comprehensive performance 
comparison across all architectures averaged 
over five dataset sizes. Metrics include model

complexity (parameters), accuracy, classification 
quality (precision, recall, F1), and computational
efficiency (training time). MLP achieves the best

accuracy-efficiency trade-off.

Arch
itectu

re 

Par
am
e-

ters

Avg 
Ac

cura
cy 

Pre
ci-
sio
n 

Reca
ll 

F1-
Scor

e 

Avg 
Train
ing

Time 
MLP ~5,

500
96.6
% 

94.2
% 

93.8
% 

94.0
% 

9.4s

CNN ~3,
800

91.0
% 

91.5
% 

88.3
% 

89.8
% 

17.0s

Logisti
c Reg

~5 79.2
% 

76.8
% 

74.5
% 

75.6
% 

0.8s

Ran-
dom

Forest 

~1,
200

88.4
% 

86.9
% 

85.2
% 

86.0
% 

3.2s

The MLP consistently demonstrates
tighter confidence intervals with standard
deviations averaging 0.8%, compared to the
CNN’s 2.1%, indicating superior training
stability and reproducibility. Both neural
architectures significantly exceed traditional
baseline methods, with logistic regression
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complex architectures based solely on their 
success in other domains. 

5.3. Limitations and Future Work 
This study employs synthetic datasets 

generated through controlled simulation, 
necessitating validation with real-world 
distributed system telemetry to confirm 
findings under actual operating conditions 
with natural data distributions and noise 
patterns. The binary classification 
formulation represents a simplified version 
of practical scheduling problems, which 
may involve multi-class node 
categorization, regression-based per-
formance prediction, or multi-objective 
optimization balancing multiple competing 
constraints. The fixed four-attribute feature 
space may not capture the full complexity 
of production systems with dozens of 
monitoring metrics, dynamic workload 
characteristics, and heterogeneous hard-
ware configurations. This research does not 
explore advanced architectural variants 
including attention mechanisms that could 
selectively focus on relevant attributes, 
transformer architectures that have shown 
promise for tabular data, or hybrid designs 
combining convolutional and fully 
connected layers. Future research 
directions include Neural Architecture 
Search for automated optimization that 
discovers problem-specific architectures 
without manual design, online learning 
approaches enabling continuous adaptation 
to evolving system conditions and 
workload patterns, multi-objective 
optimization simultaneously considering 
accuracy alongside inference latency and 
energy consumption, and explainability 
techniques such as SHAP values or 
attention visualization to provide 
interpretable justifications for scheduling 
decisions. Hybrid architectures syste-
matically combining CNN feature extra-
ction with MLP classification warrant inve-
stigation to determine whether comple-
mentary strengths can be leveraged. Real-
world deployment studies in production 
distributed systems are essential to validate 
laboratory findings, assess robustness to 

operational challenges, and quantify 
practical impact on resource utilization and 
application performance. [8] 

5.4. Computational Complexity 
and Scalability 

In terms of computational comple-
xity, the MLP exhibits O(n × h) time 
complexity per forward pass, where n is the 
number of input features and h the total 
number of hidden neurons. The CNN, on the 
other hand, adds convolutional overhead 
proportional to O(f × k × n), where f is the 
number of filters and k the kernel size. 
Empirically, the CNN’s training time scaled 
1.8× slower than the MLP due to 
convolutional and batch normalization 
operations. Regarding scalability, both 
architectures scale linearly with dataset 
size; however, the MLP demonstrates 
superior efficiency in low-latency 
environments due to its smaller 
computational graph and absence of 
convolutional layers. These characteristics 
make the MLP more appropriate for 
distributed schedulers deployed on edge 
devices or lightweight nodes. [9] 

6. Conclusions
6.1. Summary and Key Insights 

This research conducted a systematic 
comparative evaluation of Convolutional 
Neural Network and Multilayer Perceptron 
architectures for node suitability 
classification across five dataset scales 
ranging from 100 to 2000 instances. The 
MLP architecture demonstrated superior 
and consistent performance, achieving 
validation accuracies between 91% and 
98.8% with predictable improvement 
curves as training data increased, while 
maintaining tight confidence intervals 
indicating reliable reproducibility. The 
CNN architecture showed competitive but 
variable performance ranging from 85% to 
94% accuracy, exhibiting non-monotonic 
behavior across dataset sizes and higher 
sensitivity to initialization conditions. The 
key insight emerging from this empirical 
analysis is that architecture selection must 
fundamentally align with inherent data 
structure characteristics rather than 
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defaulting to architecturally sophisticated 
approaches. The MLP’s fully connected 
design naturally suits unordered tabular 
attributes by learning arbitrary feature 
interactions without spatial locality 
assumptions, whereas the CNN’s 
convolutional operations impose structural 
biases inappropriate for independent node 
features. This research demonstrates that 
simpler architectures can substantially 
outperform more complex ones when 
properly matched to problem structure, 
challenging the assumption that 
architectural complexity correlates with 
performance. Computational efficiency 
analysis reveals the MLP trains 1.8 times 
faster than the CNN while achieving 
superior accuracy, providing compelling 
evidence for MLP adoption in resource-
constrained deployments. Both neural 
approaches significantly exceed traditional 
baseline methods including logistic 
regression and random forests, justifying 
the adoption of deep learning techniques 
for intelligent resource scheduling in 
distributed systems.  [10] 

The findings provide evidence-based 
guidance for practitioners building AI-powered 
resource managers, emphasizing the importance 
of architecture-problem fit over pursuing state-
of-the-art complexity. The broader impact 
extends beyond distributed scheduling to any 
domain involving tabular data classification, 
suggesting that careful architecture selection 
based on data characteristics should precede 
optimization efforts.  [11] 

The scientific novelty of this research 
lies in providing the first comprehensive 
empirical comparison between MLP and 
CNN architectures specifically for node 
suitability classification in distributed 
computing systems. The study establishes a 
reproducible methodological framework 
and empirical evidence that simpler 
architectures can outperform more complex 
ones when matched to the structural 
properties of tabular node data. 

Future work should explore adaptive 
architectures that automatically configure 
based on input data properties, enabling 

systems to self-optimize without manual 
architecture engineering. As distributed 
computing systems continue scaling to 
unprecedented sizes, principled neural 
architecture selection becomes increasingly 
critical for achieving efficient resource 
utilization while maintaining acceptable 
computational overhead and operational 
transparency. [12] [13] [14] 
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COMPARATIVE ANALYSIS OF CONVOLUTIONAL AND MULTILAYER PERCEPTRON 
NEURAL NETWORKS FOR RESOURCE ALLOCATION IN DISTRIBUTED COMPUTING 
SYSTEMS 
 

Efficient resource distribution in heterogeneous distributed computing systems requires 
intelligent node selection mechanisms capable of adapting to dynamic system conditions. This 
research presents a comparative evaluation of Convolutional Neural Network (CNN) and 
Multilayer Perceptron (MLP) architectures for binary node suitability classification in 
distributed task scheduling environments. The study employs five synthetic datasets ranging 
from 100 to 2000 instances, with each node characterized by four critical attributes: 
performance, security level, baud rate, and reliability. Experimental results demonstrate that 
the MLP architecture achieves validation accuracy between 91% and 98.8% with high 
consistency across dataset sizes, while the CNN architecture shows fluctuating performance 
ranging from 85% to 94%. The key finding reveals that MLP architectures outperform CNNs 
for tabular node data due to better alignment with unstructured attribute relationships, as 
fully connected layers naturally handle unordered features without imposing spatial locality 
assumptions. This empirical analysis provides practical guidance for architecture selection in 
AI-based resource schedulers, demonstrating that simpler architectures can outperform more 
complex ones when appropriately matched to problem structure. The findings contribute 
evidence-based recommendations for distributed systems practitioners implementing neural 
network-based scheduling solutions. 

Keywords: distributed computing systems; resource allocation; Multilayer Perceptron 
(MLP); Convolutional Neural Network (CNN); task scheduling; node selection; binary 
classification; tabular data processing. 
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ПОРІВНЯЛЬНИЙ АНАЛІЗ ЗГОРТКОВИХ НЕЙРОННИХ МЕРЕЖ ТА БАГАТО-
ШАРОВИХ ПЕРЦЕПТРОНІВ ДЛЯ РОЗПОДІЛУ РЕСУРСІВ У РОЗПОДІЛЕНИХ 
ОБЧИСЛЮВАЛЬНИХ СИСТЕМАХ 
 

Ефективний розподіл ресурсів у гетерогенних розподілених обчислювальних системах 
потребує інтелектуальних механізмів вибору вузлів, здатних адаптуватися до 
динамічних умов системи. Це дослідження представляє порівняльну оцінку архітектур 
згорткової нейронної мережі (CNN) та багатошарового перцептрона (MLP) для 
бінарної класифікації придатності вузлів у середовищах розподіленого планування 
задач. У роботі використано п’ять синтетичних наборів даних обсягом від 100 до 
2000 записів, де кожен вузол описується чотирма ключовими атрибутами: 
продуктивність, рівень безпеки, швидкість передавання даних (baud rate) та 
надійність. Експериментальні результати показують, що архітектура MLP досягає 
точності валідації між 91% та 98,8% із високою стабільністю для різних обсягів 
даних, тоді як архітектура CNN демонструє коливання результатів у межах 85–94%. 
Основний висновок полягає в тому, що архітектури MLP переважають CNN для 
табличних даних вузлів завдяки кращій відповідності структурі неупорядкованих 
атрибутів, оскільки повнозв’язні шари природно працюють із неструктурованими 
ознаками без накладання припущень про просторову локальність. Це емпіричне 
дослідження надає практичні рекомендації щодо вибору архітектур у ресурсних 
планувальниках на основі ШІ, демонструючи, що простіші моделі можуть 
перевершувати складніші, якщо вони краще відповідають природі задачі. Отримані 
результати роблять внесок у формування рекомендацій для фахівців з розподілених 
систем, які впроваджують нейронні мережі у процеси планування. 
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