Intelligent approaches to designing cloud-oriented decision-support systems in education
DOI:
https://doi.org/10.18372/2073-4751.83.20545Keywords:
decision-support system, microservice architecture, educational data analytics, MLOps lifecycle, adaptive learning systemsAbstract
The article presents a comprehensive approach to designing an intelligent cloud-oriented decision-support system (DSS) for the educational domain, combining the principles of microservice architecture, cognitive modelling, and machine-learning operations. The relevance of the study is justified by the growing volume of educational data, the need for personalized learning trajectories, and the necessity to maintain stable SLO indicators under dynamically changing learning conditions. The analysis of current research highlights the limitations of traditional monolithic LMS platforms, which lack sufficient flexibility, scalability, and capabilities for integrating intelligent models.
The proposed system architecture is based on event-driven microservice interaction via Kafka and incorporates modules for collecting and normalizing learning events, a feature-engineering subsystem, recommendation and risk-prediction services, and a dedicated pipeline for modelling and monitoring ML components. The results of the study demonstrate that combining microservice decomposition with intelligent data-analysis methods improves recommendation accuracy, enhances performance indicators, and ensures the resilience of the educational platform under high load. The presented architecture can serve as a foundation for building scalable and adaptive next-generation educational ecosystems.
References
Adel A, Alani N.H.S. Human-centric collaboration and Industry 5.0 framework in smart cities and communities: fostering sustainable development goals 3, 4, 9, and 11 in Society 5.0. Smart Cities. 2024. Vol. 7, 4. P. 1723–1775. DOI: 10.3390/smartcities7040068
Chatzopoulou D.I., Economides A.A. Adaptive assessment of student's knowledge in programming courses. Journal of Computer Assisted Learning. 2010. Vol. 26, 4, P. 258-269. DOI: 10.1111/j.1365-2729.2010.00363.x.
Melesko J, Kurilovas E. Personalised intelligent multi-agent learning system for engineering courses. 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE). 2016. DOI: 10.1109/AIEEE.2016.7821821
Kristensen T., Dyngeland M. Design and Development of a Multi-Agent E-Learning System. 2015. International Journal of Agent Technologies and Systems. Vol. 7, 2, P. 19-74. DOI: 10.4018/IJATS.2015040102
Yanytska L. The rise of human-centric manufacturing in the industry 5.0 era. Int J Adv Manuf Technol. 2025. Vol. 139. P. 5067–5077. DOI: 10.1007/s00170-025-16192-5.
Di Francesco P., Lago P., Malavolta I. Architecting with microservices: A systematic mapping study. Journal of Systems and Software. 2019. P. 77-97. DOI: 10.1016/j.jss.2019.01.001.
Marieska M.D., Yunanta A., Auliam H., Utami A.S. Rizqie M.Q. Performance Comparison of Monolithic and Microservices Architectures in Handling High-Volume Transactions. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi). 2025. Vol. 9, 3. P. 594-600. DOI: 10.29207/resti.v9i3.6183
Dragoni N., Lanese I., Larsen S.T., Mazzara M., Mustafin R., Safina L. Microservices: How to make your application scale. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2017. 10742 LNCS, 95-104. DOI: 10.1007/978-3-319-74313-4_8.
Zarour M., Alzabut H., Al-Sarayreh K.T. MLOps best practices, challenges and maturity models: A systematic literature review. Information and Software Technology. 2025. Vol. 183. 107733. DOI: 10.1016/j.infsof.2025.107733.
Barbudo R., Ventura S., Romero J.R. Eight years of AutoML: categorisation, review and trends. Knowl Inf Syst. 2023. 65. 5097–5149. DOI: 10.1007/s10115-023-01935-1
Artamonov Y., Golovach I., Zymovchenko V. Use analysis of microserves in e-learning system with multi-variant access to educational materials. Technology Audit and Production Reserves. 2021. 4 (2 (60)), 45–50. DOI: 10.15587/2706-5448. 2021.237760.
Artamonov E.B, Zholdakov O.O. Concept of creating a software environment for automated text manipulation. Scientific journal “Proceedings of the National Aviation University”. 2010 . Vol. 3 (44), 111-115.
Fu Y., Gu S., Cheng L., Liu L. Performance evaluation of resource management schemes for cloud-native platforms with computing containers. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). 2022. DOI: 10.1109/ipccc55026. 2022.9894300.
Mustyala A. Dynamic resource allocation in Kubernetes: Optimizing cost and performance. EPH – International Journal of Science and Engineering. 2021. 7, 3. DOI: 10.53555/ephijse.v7i3.237.
González S. Modular software design in distributed systems: Strategic approaches for building scalable, maintainable, and fault-tolerant architectures in modern microservice environments. Eigenpub Review of Science and Technology. 2023. 7, 1. DOI: 10.1007/s10916-020-1195-x.
Hang Y., Xiulei W., Changyou X., Bo X. A Microservice Resilience Deployment Mechanism Based on Diversity. Security and Communication Networks. 2022. 7146716. DOI: 10.1155/2022/7146716.
Kazanavičius J., & Mažeika D. The Evaluation of Microservice Communication While Decomposing Monoliths. Computing and Informatics. 2023. 42(1), 1–36. DOI: 10.31577/cai_2023_1_1
Mejía P. Best practices for microservice framework design. Advances in Intelligent Information Systems. 2022. 7, 1. URL: https://questsquare.org/index.php/JOURNALAIIS/article/view/70.
Bravetti M., Giallorenzo S., Mauro J., Talevi I., Zavattaro G. Optimal and automated deployment for microservices. Fundamental Approaches to Software Engineering. 2019 . 351–368. DOI: 10.1007/978-3-030-16722-6_21.
Gnatyuk S. Multilevel Unified Data Model for Critical Aviation Information Systems Cybersecurity. 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). 2019. 242-247. DOI: 10.1109/APUAVD47061.2019.8943833.
Auer F., Lenarduzzi V., Felderer M., Taibi D. From monolithic systems to Microservices: An assessment framework. Information and Software Technology. 2021. Vol. 137.
Gnatyuk S., Sydorenko V., Polihenko O., Sotnichenko Y., Nechyporuk O. Studies on the disasters criticality assessment in aviation information infrastructure. CEUR Workshop Proceedings. 2020. 282–296. ISSN: 16130073.
Artamonov Y.B., Plotytsia S.V., Radchenko K.M., Kotsiur A.B. Microservice Architecture of Intelligent Educational Platforms with ML Pipeline Self-Optimization. Science and technology today. 2025. 10, 51. P. 1059-1073. DOI: 10.52058/2786-6025-2025-10(51)-1059-1073.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).