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Introduction 
The digital transformation of education 

is accompanied by the active adoption of 
cloud technologies, analytical systems, and 
intelligent services that support managerial, 
pedagogical, and learning-related decision-
making processes [1, 2, 3, 4]. Within the 
context of the evolution toward Industry 5.0 
and human-centric Society 5.0, educational 
platforms must provide not only access to 
knowledge but also dynamic personalization, 
adaptation to individual learner 
characteristics, and continuous self-
improvement of their internal algorithms [1, 
5]. Achieving these capabilities requires 
intelligent architectures capable of 
integrating principles of cloud computing, 
machine learning, and cognitive modelling. 

Traditional monolithic learning 
management systems (LMS) demonstrate 
limited scalability, weak support for 
integrating external analytical modules, and 
the need for manual updates of internal 
components, which collectively reduce 
system reliability and performance. As 
demonstrated in recent studies [6, 7, 8], a 
microservice architecture represents an 

effective approach to building contemporary 
distributed educational platforms, as it 
ensures service independence, flexibility of 
updates, and high fault tolerance. This 
architectural paradigm enables the 
integration of ML/AI modules as separate 
services, reducing the complexity of model 
lifecycle management and improving quality 
control mechanisms. 

At the same time, advancements in 
MLOps technologies have created new 
opportunities for automating model training, 
testing, and deployment in production 
environments. A systematic review [9] 
confirms that combining MLOps practices 
with microservice-based architecture enables 
continuous model improvement (continuous 
training), detection of data drift, and 
seamless integration of AutoML tools [10]. 
These capabilities are particularly important 
for educational systems, where learning data 
streams are dynamic and context-dependent, 
and the performance of predictive models 
relies on the continual updating of their 
parameters. 
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ПОДІЄВО-ОРІЄНТОВАНА МОДЕЛЬ ГРАНИЧНОЇ ОБРОБКИ ДАНИХ ДЛЯ
СИСТЕМ ПРОМИСЛОВОГО ІНТЕРНЕТУ РЕЧЕЙ

Ефективне функціонування промислових систем Інтернету речей вимагає
швидкого виявлення та інтерпретації відхилень параметрів, збоїв обладнання та
операційних подій. Хмарно-орієнтовані архітектури моніторингу створюють
затримки, залежать від стабільності мережі та обмежують автономність, що
знижує стійкість у критично важливих промислових сценаріях. У статті
запропоновано подієво-орієнтовану модель обробки даних, призначену для розгортання
на edge-вузлах промислових кіберфізичних систем.

Модель включає структуроване подання подій, дескриптор відхилення для
кількісної оцінки аномальної поведінки, адаптивний механізм класифікації рівнів
критичності та правило-орієнтований шар прийняття рішень для локальних дій у
режимі реального часу. Запропонована логіка перетворює сирі сенсорні дані на
контекстуалізовані події, аналізує динаміку відхилень, визначає рівні небезпеки
залежно від контексту та обирає відповідні локальні дії без необхідності постійного
хмарного зв’язку.

Моделювання типових промислових сценаріїв — стабільного режиму, повільного
дрейфу та різких збурень, показало здатність моделі відрізняти нормальні флуктуації
від критичних аномалій, динамічно підвищувати рівень критичності та забезпечувати
автономне реагування за відсутності підключення до хмари. Запропонований підхід
підвищує швидкодію, стійкість і загальну надійність систем промислового IoT.
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The relevance of this study lies in the 
need to develop an intelligent cloud-oriented 
decision-support system (DSS) based on 
microservice architecture, equipped with 
integrated MLOps mechanisms and self-
optimizing machine-learning pipelines. 

The research problem spans three 
interconnected dimensions: architectural 
optimization (transition from monolithic to 
microservice solutions), intellectualization of 
analytics (integration of ML and AutoML) 
and cognitive support for decision-making 
(embedding explainable and adaptive models 
into learning processes). 

Analysis of Research 
In contemporary educational practice, 

decision-support systems (DSS) are 
increasingly implemented, typically relying 
on analytical dashboards, statistical modules, 
and models for predicting learning outcomes. 
However, most existing systems remain 
fragmented, primarily oriented toward 
descriptive analytics and lacking a full 
cognitive decision-making cycle. 

An examination of current solutions [2, 
3, 4, 11] shows that the majority of 
educational platforms do not incorporate 
unified methods for cognitive decision 
support at either the instructor level or the 
course-management level. Existing 
adaptation algorithms are generally limited 
to content filtering or statistical 
recommendations, without taking 
behavioural or cognitive factors into account. 
To transition toward intelligent DSS, it is 
necessary to integrate neuro-symbolic 
models, fuzzy logic, Bayesian inference, and 
multi-agent systems capable of explaining 
their decisions and interacting with 
pedagogical parameters of the learning 
process [3, 4, 12]. 

A further challenge is ensuring 
efficient management of computational 
resources and containerized components in 
cloud environments. As highlighted in [13, 
14], automated scaling of Kubernetes 
clusters and load balancing across services 
significantly affect the performance of 
educational platforms and help reduce 
operational costs under high concurrency. 

Nevertheless, even under these conditions, 
the problem of optimizing inter-service 
communication persists: communication 
delays may degrade system responsiveness 
unless well-designed asynchronous 
interaction mechanisms are implemented 
[15-19]. 

Recent studies emphasize that effective 
DSS operation requires the integration of 
heterogeneous data sources and the use of 
flexible, scalable architectures [11, 13]. For 
example, [11] demonstrates the application 
of microservice architecture in e-learning 
systems to support personalized access to 
educational materials and rapid adaptation to 
changes in the learning process. However, 
these approaches still fall short of fully 
addressing predictive analytics and 
recommendation mechanisms, which are 
essential for next-generation DSS. 

The problem of intellectualizing 
decision-making processes in education is 
further explored in [2, 4], which show that 
combining data analytics with cognitive 
models improves the accuracy and 
adaptability of decision-support systems. 

Practical implementation of such 
models within scalable cloud environments 
faces several technical barriers: the need for 
continuous model monitoring, retraining, 
fault tolerance, and integration with real-time 
data streams. To address these challenges, 
[14] proposes mechanisms for dynamic 
resource scheduling and load distribution 
across microservices, ensuring stable 
operation of ML components within cloud-
based DSS. 

A growing body of research focuses on 
cloud computing as a foundational 
technology for building scalable DSS. 
Studies [13, 14] examine the performance of 
container management approaches in 
Kubernetes and other cloud-native platforms, 
demonstrating that optimizing scaling 
policies and resource orchestration directly 
affects the efficiency of educational analytics 
systems. 

Another relevant line of research 
concerns ensuring the reliability and 
resilience of critical information systems, 
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which is crucial for educational platforms 
with stringent requirements for security and 
continuous operation. In [20], a multi-level 
unified data model for cybersecurity in 
aviation information systems is proposed, 
based on hierarchical structuring and 
controlled subsystem interaction. Similarly, 
[22] explores methods for assessing the 
criticality of failures in complex information 
infrastructures, focusing on risk models and 
analyses of catastrophic scenarios. Applying 
these principles to the educational domain 
enables the development of DSS capable of 
self-diagnosis, failure prediction, and 
strategic response planning in cases of 
system faults or data loss. 

In addition, [21] presents a systematic 
methodology for assessing the transition 
from monolithic architectures to 
microservices, offering criteria for evaluating 
performance, reliability, and operational 
resilience. Their framework facilitates 
formalization of decomposition processes, 
identification of critical dependency points, 
and minimization of migration-related risks. 
Given that modern educational platforms 
increasingly integrate ML modules, 
analytical services, and personalization 
components, structured migration strategies 
become crucial for ensuring controllability 
and predictability of system behaviour. 

Within this context, microservice 
architecture enables the separation of 
decision-making logic from operational 
infrastructure, allowing independent 
component updates and seamless integration 
with MLOps processes [15, 19, 23]. In 
particular, [23] demonstrates that combining 
microservices with automated ML pipelines 
reduces system response time by 40% and 
increases model accuracy by 20% compared 
to monolithic solutions. 

Modern DSS require the integration of 
structured and unstructured educational data 
into a unified analytical environment. To 
achieve this, Data Warehouse and Data Lake 
models are employed together with intelligent 
agents responsible for automatic data 
collection, cleansing, and contextual 
interpretation. Studies [15, 18] indicate that 

such integration not only enhances the 
accuracy of predictive models but also 
improves transparency by enabling traceability 
of data sources and inference logic. 

Recent advances in cognitive 
modelling propose transferring principles of 
human reasoning into algorithmic 
frameworks for educational DSS. The use of 
Bayesian networks, fuzzy systems, and 
hybrid (symbolic and subsymbolic) AI 
enables the development of explainable 
artificial intelligence (XAI), which is 
essential in educational contexts. 

As noted in [16, 18, 23], combining 
cognitive models with cloud infrastructure 
and MLOps tools enables adaptive decision 
support, where the system not only predicts 
outcomes but also explains its conclusions to 
users – teachers, administrators, or students. 

Постановка проблеми 
The purpose of this study is to identify 

an architectural solution for synthesizing 
methods of intelligent data analysis in the 
development of an intelligent cloud-oriented 
decision-support system (DSS) for 
education. Such a system must be capable of 
self-optimizing ML pipelines, scaling 
dynamically, and maintaining SLO (service 
level objective) thresholds under variable 
learning workloads [13, 14, 23]. 

Formally, for a set of learning events 
{E}, users {U}, and decisions {D}, the 
system must maximize the expected utility of 
decisions subject to performance and 
reliability constraints: 

,( ) ( ( ) )

( )

,

( )
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latency L

availability A

cost C
(1) 

whereπ – denotes the decision-making policy 
(service orchestration and model inference); 
U – represents domain-specific utility (e.g., 
improved academic performance or timely 
pedagogical interventions); 
L*, A*, C* – SLO thresholds (for example, for 
API Latency SLO: 95% of requests must 
complete within ≤200 ms; for Availability 

The relevance of this study lies in the
need to develop an intelligent cloud-oriented
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into learning processes).
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fragmented, primarily oriented toward
descriptive analytics and lacking a full 
cognitive decision-making cycle.

An examination of current solutions [2, 
3, 4, 11] shows that the majority of
educational platforms do not incorporate
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multi-agent systems capable of explaining
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A further challenge is ensuring
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resources and containerized components in
cloud environments. As highlighted in [13, 
14], automated scaling of Kubernetes
clusters and load balancing across services
significantly affect the performance of
educational platforms and help reduce 
operational costs under high concurrency.

Nevertheless, even under these conditions,
the problem of optimizing inter-service 
communication persists: communication 
delays may degrade system responsiveness
unless well-designed asynchronous
interaction mechanisms are implemented
[15-19].

Recent studies emphasize that effective
DSS operation requires the integration of
heterogeneous data sources and the use of 
flexible, scalable architectures [11, 13]. For 
example, [11] demonstrates the application 
of microservice architecture in e-learning 
systems to support personalized access to
educational materials and rapid adaptation to
changes in the learning process. However,
these approaches still fall short of fully
addressing predictive analytics and
recommendation mechanisms, which are 
essential for next-generation DSS. 

The problem of intellectualizing 
decision-making processes in education is 
further explored in [2, 4], which show that
combining data analytics with cognitive
models improves the accuracy and
adaptability of decision-support systems.

Practical implementation of such
models within scalable cloud environments
faces several technical barriers: the need for 
continuous model monitoring, retraining,
fault tolerance, and integration with real-time 
data streams. To address these challenges,
[14] proposes mechanisms for dynamic
resource scheduling and load distribution 
across microservices, ensuring stable
operation of ML components within cloud-
based DSS. 

A growing body of research focuses on
cloud computing as a foundational
technology for building scalable DSS. 
Studies [13, 14] examine the performance of 
container management approaches in
Kubernetes and other cloud-native platforms, 
demonstrating that optimizing scaling 
policies and resource orchestration directly
affects the efficiency of educational analytics
systems.

Another relevant line of research
concerns ensuring the reliability and
resilience of critical information systems, 
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SLO: the platform must operate ≥99.9% of 
the time; for ML Model Accuracy SLO: rec-
ommendation accuracy ≥0.82). 

Under this formulation, the intelligent 
DSS, at the Observation stage, collects data 
from various sources: LMS activity logs, 
user feedback, assessment results, sensor 
inputs, and behavioural signals. These form 
the incoming information stream ot. 

The Orientation stage involves con-
structing a cognitive representation of the 
context, i.e., the knowledge set Kt that de-
scribes the current state of the learning envi-
ronment: 

Kt=forient(Kt−1,ot), (2) 
where forient() – function responsible for ag-
gregating, filtering, and normalizing incom-
ing signals. 

Following this, the system proceeds to 
the Decision stage, in which an action dt is 
selected from the set of available alterna-
tives D. 

The final stage, Action, implements the 
chosen decision through the corresponding 
service of the platform (e.g., recommending 
educational content or initiating an instructor 
intervention), generating new observations 
and closing the cognitive adaptation 
loop [12]. 

To analyze and categorize educational 
data within the DSS, classical machine-
learning algorithms are applied to ensure 
both interpretability and predictive accuracy. 

A Decision Tree constructs a sequence 
of attribute-based questions that minimize 
information entropy; Random Forest aggre-
gates results from multiple trees, increasing 
robustness to noise and overfitting; and Gra-
dient Boosting minimizes the error of the 
previous ensemble by sequentially construct-
ing weak learnershm(x): 

Fm(x)=Fm−1(x)+ν hm(x), (3) 
whereν –a learning rate; 
hm(x) –a regression function selected based 
on the loss gradient. 

Within the educational context, these 
algorithms enable automatic identification of 
at-risk student groups, prediction of potential 
underperformance, assessment of the impact 

of student activity on outcomes, and 
generation of personalized content 
recommendations. 

Learning-outcome forecasting is a key 
component of cognitive DSS. Regression 
and time-series models are commonly 
employed. 

ARIMA(p,d,q) and LSTM models are 
used to analyze temporal patterns of student 
activity, allowing the system to forecast 
engagement fluctuations, detect declines in 
motivation, and automatically propose 
corrective measures [14]. 

Integrating predictive models into the 
MLOps lifecycle of the cloud architecture 
ensures their automatic retraining under data 
drift, a critical requirement in highly 
dynamic learning environments. 

However, the formal optimization 
model alone does not define how such 
functionality can be implemented in a real 
high-load educational system. This 
necessitates intelligent approaches that 
combine artificial-intelligence methods (ML, 
AutoML, NAS), cognitive decision-support 
models, and MLOps principles. 

For instance, the orientation model (2) 
requires aggregation, normalization, and 
storage services capable of constructing the 
cognitive state Kt. The gradient boosting 
scheme (3) requires an execution environment 
supporting repeated retraining, version control, 
and performance monitoring. The optimization 
problem (1) can only be solved when the 
policy π is materialized as a set of services 
responsible for observation, decision-making, 
and user interaction while maintaining SLO 
constraints. 

Thus, the mathematical formulation 
directly imposes architectural requirements for 
the system: asynchronous event exchange, 
component isolation, scalable deployment, 
automated ML-pipeline management, and 
mechanisms for monitoring model quality. 
This justification motivates the next stage of 
research – developing a microservice-based 
cloud-oriented architecture capable of 
implementing models (1)–(3) and supporting a 
complete cognitive cycle in a dynamic 
educational environment. 



Проблеми інформатизації та управління, 3(83)`2025 15

Figure 1. The proposed architecture of a cloud-oriented decision-support 
system in education 

Design of a Microservice-Based 
Cloud-Oriented Architecture 

The architecture of the proposed cloud-
oriented decision-support system for 
education (Fig. 1) is constructed according to 
principles of microservice decomposition, 
where each component performs a narrowly 
focused, specialized function while 
remaining integrated with others through 
standardized protocols and an event-driven 
messaging infrastructure. 

At the upper level resides the user-
interface layer, which includes web and 
mobile applications and provides interaction 
for students, instructors, and administrative 
users. All user requests are routed through an 
API Gateway / Backend-for-Frontend (BFF), 
responsible for authentication, authorization, 
request routing, and enforcing centralized 
access policies. The API Gateway serves as a 
controlled entry point, reducing load on 

internal services and unifying external 
integrations. 

Requests are then forwarded to a set 
of microservices implementing the system’s 
domain logic. The Ingestion Service is 
responsible for receiving and normalizing 
educational, behavioural, and operational 
data. These are subsequently processed by 
the Profile Service, which maintains user 
profiles and individual learning trajectories. 
The Feature Service constructs machine-
oriented features for predictive and 
recommendation models, interacting with 
data sources and the MLOps subsystem. 
The Recommendation Service handles 
content-personalization requests and 
learning-path generation, leveraging outputs 
of machine-learning models. The Risk & 
Forecast Service evaluates academic risks 
(such as probability of dropout or low 

SLO: the platform must operate ≥99.9% of
the time; for ML Model Accuracy SLO: rec-
ommendation accuracy ≥0.82).

Under this formulation, the intelligent
DSS, at the Observation stage, collects data
from various sources: LMS activity logs,
user feedback, assessment results, sensor
inputs, and behavioural signals. These form
the incoming information stream ot. 

The Orientation stage involves con-
structing a cognitive representation of the
context, i.e., the knowledge set Kt that de-
scribes the current state of the learning envi-
ronment: 

Kt=forient(Kt−1,ot), (2) 
where forient() – function responsible for ag-
gregating, filtering, and normalizing incom-
ing signals.

Following this, the system proceeds to 
the Decision stage, in which an action dt is 
selected from the set of available alterna-
tives D. 

The final stage, Action, implements the
chosen decision through the corresponding 
service of the platform (e.g., recommending
educational content or initiating an instructor
intervention), generating new observations 
and closing the cognitive adaptation
loop [12].

To analyze and categorize educational
data within the DSS, classical machine-
learning algorithms are applied to ensure
both interpretability and predictive accuracy.

A Decision Tree constructs a sequence
of attribute-based questions that minimize
information entropy; Random Forest aggre-
gates results from multiple trees, increasing 
robustness to noise and overfitting; and Gra-
dient Boosting minimizes the error of the
previous ensemble by sequentially construct-
ing weak learnershm(x):

Fm(x)=Fm−1(x)+ν hm(x), (3) 
whereν –a learning rate; 
hm(x) –a regression function selected based
on the loss gradient. 

Within the educational context, these 
algorithms enable automatic identification of
at-risk student groups, prediction of potential 
underperformance, assessment of the impact

of student activity on outcomes, and 
generation of personalized content 
recommendations.

Learning-outcome forecasting is a key
component of cognitive DSS. Regression 
and time-series models are commonly
employed.

ARIMA(p,d,q) and LSTM models are
used to analyze temporal patterns of student 
activity, allowing the system to forecast
engagement fluctuations, detect declines in 
motivation, and automatically propose
corrective measures [14]. 

Integrating predictive models into the
MLOps lifecycle of the cloud architecture
ensures their automatic retraining under data
drift, a critical requirement in highly
dynamic learning environments.

However, the formal optimization 
model alone does not define how such 
functionality can be implemented in a real
high-load educational system. This 
necessitates intelligent approaches that
combine artificial-intelligence methods (ML,
AutoML, NAS), cognitive decision-support
models, and MLOps principles.

For instance, the orientation model (2)
requires aggregation, normalization, and
storage services capable of constructing the 
cognitive state Kt. The gradient boosting
scheme (3) requires an execution environment
supporting repeated retraining, version control,
and performance monitoring. The optimization
problem (1) can only be solved when the
policy π is materialized as a set of services
responsible for observation, decision-making,
and user interaction while maintaining SLO
constraints.

Thus, the mathematical formulation
directly imposes architectural requirements for
the system: asynchronous event exchange,
component isolation, scalable deployment,
automated ML-pipeline management, and
mechanisms for monitoring model quality.
This justification motivates the next stage of
research – developing a microservice-based
cloud-oriented architecture capable of
implementing models (1)–(3) and supporting a
complete cognitive cycle in a dynamic
educational environment.
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performance) and produces forecasts based 
on historical data. 

Model Serving provides real-time 
deployment and execution of AI models and 
operates as an independent component 
responsible for low inference latency, scalable 
behaviour, and hot model updates. The 
Monitoring & Drift Service observes service 
stability, analyses data and model drift, detects 
anomalies, and triggers retraining procedures 
in case of quality degradation. The Reporting 
& BI Service provides analytical visualization, 
management dashboards, and supports 
decision-making at the instructor, faculty, or 
administrative levels. 

A key integration element of the 
architecture is the Event Bus based on Kafka, 
which ensures asynchronous message 
exchange among microservices, traffic 
isolation, and scalable interaction within an 
event-driven model. Through Kafka, services 
publish events, react to them, or initiate model 
updates, feature generation, and analytical 
workflows. This avoids tight coupling and 
guarantees resilience to partial failures. 

The MLOps Layer, comprising 
Kubeflow, MLflow, and Vertex AI, 
orchestrates the construction, versioning, 
preparation, and optimization of ML 
pipelines; automatic model retraining; 
performance evaluation; and experiment 
tracking. This layer enables continuous 
model evolution without user intervention 
and interacts with the Feature Service, 
Recommendation Service, Monitoring & 
Drift Service, and Model Serving through 
automated pipelines. 

The data-storage subsystem includes 
PostgreSQL for transactional operations, 
Redis for caching and high-speed event 
processing, and a centralized Feature Store 
as a unified source of consistent features for 
models. Interaction with these components is 
bidirectional: services read required data and 
update it based on events arriving from 
Kafka and UI modules. 

From a logical standpoint, the DSS is 
divided into four interrelated levels that form 
a continuous cyclical loop: data – analytics – 
decisions – feedback. 

Data Ingestion Layerincorporates 
connectors to LMS/LTI systems, mobile and 
web clients, and external data sources 
(testing platforms, video services, etc.). The 
event stream is standardized using the 
schema: event_type, actor, context, payload, 
timestamp. Asynchronous delivery through 
Kafka minimizes coupling; synchronous 
calls are limited to API Gateway 
interactions. 

Operational transactions of Data 
Storage Layerare stored in PostgreSQL 
(OLTP); telemetry time series are stored in a 
metrics repository; hot data is cached in 
Redis. Analytical snapshots and long event 
histories are stored in a columnar database or 
S3-compatible object storage for offline 
computation. Features for ML are 
maintained in a Feature Store to ensure 
consistency between online and offline 
pipelines. 

Analytics & Decisions Layer includes 
microservices responsible for feature 
processing, model evaluation, online 
recommendations, risk forecasting, 
explainability (XAI), and data/model-drift 
monitoring. Orchestration of ML pipelines is 
also located here. 

Presentation Layercomprises student 
and instructor interfaces, administrative 
dashboards, and reporting components. Data 
is accessed through the BFF layer and 
analytical APIs. 

Microservice architecture adheres to 
principles of loose coupling and independent 
scalability: 

– API Gateway: single entry point,
routing, rate-limiting, OAuth2/OIDC, 
auditing; 

– BFF (Backend-for-Frontend): sepa-
rate BFFs for student, instructor, and admin 
interfaces, aggregating data from domain 
services and reducing backend chatter; 

– Ingestion Service: receives events
from clients/external sources, normalizes 
them, and publishes to Kafka; 

– Profile Service: user profiles,
learning trajectories, competence statuses; 
CRUD operations in PostgreSQL with 
Redis-accelerated reads; 
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– Feature Service: builds and serves
online features; synchronizes with the 
Feature Store; 

– Recommendation Service: online
content recommendations; supports A/B 
experiments and canary model releases; 

– Risk & Forecast Service: risk
scoring, performance forecasting, and 
intervention triggers; 

– Model Serving: isolated instances for
model inference (REST/gRPC), versioning, 
and traffic routing by model version; 

– Monitoring & Drift Service: collects
performance metrics, detects data/concept 
drift, initiates retraining; 

– Reporting & BI Service: analytical
data marts, reporting APIs, export 
mechanisms. 

Critical domain events are transported 
through Kafka topics such as:edu.activity. 
logged (atomic learner actions), 
ml.features.updated (feature updates), 
ml.model.requested / ml.model.scored (model-
inference lifecycle), etc. 

A typical user-action event contract in 
JSON format: 

{ 
 "event_type": "edu.activity.logged", 
  "actor_id": "user-123", 
 "context": {"course_id": "c-42", 

"lesson_id": "l-7"}, 
  "payload": {"action": "quiz.submit", 

"score": 0.82, "duration_sec": 315}, 
  "timestamp": "2025-11-

05T14:21:05Z" 
} 
Observability is ensured by: 
– OpenTelemetry for unified 

logs/traces/metrics; 
– Prometheus metrics with Grafana

visualization and logging through a 
centralized logging stack; 

– SLO/SLI parameters for critical
paths (latency_p95, recommenda-
tion_hit@K, error_rate, etc.). 

Data-processing flows within the 
decision lifecycle can be summarized as 
follows: 

1. A user event arrives at the Ingestion
Service and is published to Kafka. 

2. The Feature Service updates online
features and synchronizes them with the 
Feature Store. 

3. The Recommendation Service calls
Model Serving, obtains recommendations, 
and returns them through the BFF and UI. 

4. The Monitoring & Drift Service
tracks performance metrics and publishes an 
ml.drift.detected event in case of drift. 

5. Kubeflow executes a training
pipeline, and MLflow registers a new model 
version. 

6. Canary deployment evaluates online
performance; promotion to production 
occurs only if SLOs are met; otherwise, 
automatic rollback is triggered. 

7. Reporting & BI aggregates events
for management dashboards and official 
reporting. 

The overall analysis demonstrates that 
architectural decisions, algorithmic compo-
nents, and data-processing flows reinforce one 
another, establishing a robust foundation for a 
DSS capable of adaptation, self-optimization, 
and scalable operation in real educational 
environments. 

Conclusions 
Contemporary educational platforms 

have reached a point where traditional mono-
lithic LMS solutions can no longer adequately 
respond to the dynamic nature of learning data, 
the growing number of users, or the increasing 
demand for personalization. The transition 
toward an intelligent cloud-oriented decision-
support system in education requires a simul-
taneous rethinking of theoretical decision-
making models, architectural principles of 
platform design, and the lifecycle of machine-
learning models. It is at the intersection of the-
se three dimensions—cognitive, architectural, 
and MLOps-related—that the logic of the pro-
posed approach is formed. 

The proposed DSS conceptualizes the 
learning process as a cognitive cycle of ob-
servation–orientation–decision–action, where 
each stage has a clearly defined informational 
role. Learning events, behavioural signals, 
and assessment results constitute an observa-
tional data stream, from which a dynamic 
representation of contextual knowledge is 

performance) and produces forecasts based
on historical data.

Model Serving provides real-time 
deployment and execution of AI models and
operates as an independent component
responsible for low inference latency, scalable
behaviour, and hot model updates. The
Monitoring & Drift Service observes service
stability, analyses data and model drift, detects
anomalies, and triggers retraining procedures
in case of quality degradation. The Reporting 
& BI Service provides analytical visualization,
management dashboards, and supports
decision-making at the instructor, faculty, or
administrative levels.

A key integration element of the
architecture is the Event Bus based on Kafka,
which ensures asynchronous message
exchange among microservices, traffic
isolation, and scalable interaction within an
event-driven model. Through Kafka, services
publish events, react to them, or initiate model
updates, feature generation, and analytical
workflows. This avoids tight coupling and
guarantees resilience to partial failures.

The MLOps Layer, comprising 
Kubeflow, MLflow, and Vertex AI,
orchestrates the construction, versioning,
preparation, and optimization of ML
pipelines; automatic model retraining;
performance evaluation; and experiment 
tracking. This layer enables continuous
model evolution without user intervention
and interacts with the Feature Service,
Recommendation Service, Monitoring & 
Drift Service, and Model Serving through
automated pipelines.

The data-storage subsystem includes 
PostgreSQL for transactional operations,
Redis for caching and high-speed event
processing, and a centralized Feature Store 
as a unified source of consistent features for
models. Interaction with these components is 
bidirectional: services read required data and
update it based on events arriving from
Kafka and UI modules.

From a logical standpoint, the DSS is 
divided into four interrelated levels that form
a continuous cyclical loop: data – analytics –
decisions – feedback.

Data Ingestion Layerincorporates
connectors to LMS/LTI systems, mobile and
web clients, and external data sources
(testing platforms, video services, etc.). The 
event stream is standardized using the
schema: event_type, actor, context, payload,
timestamp. Asynchronous delivery through
Kafka minimizes coupling; synchronous
calls are limited to API Gateway
interactions.

Operational transactions of Data
Storage Layerare stored in PostgreSQL 
(OLTP); telemetry time series are stored in a
metrics repository; hot data is cached in
Redis. Analytical snapshots and long event
histories are stored in a columnar database or
S3-compatible object storage for offline
computation. Features for ML are
maintained in a Feature Store to ensure
consistency between online and offline 
pipelines. 

Analytics & Decisions Layer includes
microservices responsible for feature 
processing, model evaluation, online
recommendations, risk forecasting,
explainability (XAI), and data/model-drift 
monitoring. Orchestration of ML pipelines is 
also located here.

Presentation Layercomprises student
and instructor interfaces, administrative
dashboards, and reporting components. Data
is accessed through the BFF layer and
analytical APIs.

Microservice architecture adheres to 
principles of loose coupling and independent
scalability:

– API Gateway: single entry point,
routing, rate-limiting, OAuth2/OIDC,
auditing;

– BFF (Backend-for-Frontend): sepa-
rate BFFs for student, instructor, and admin 
interfaces, aggregating data from domain
services and reducing backend chatter;

– Ingestion Service: receives events
from clients/external sources, normalizes 
them, and publishes to Kafka;

– Profile Service: user profiles,
learning trajectories, competence statuses;
CRUD operations in PostgreSQL with
Redis-accelerated reads;
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constructed. This cognitive model underlies 
the formal problem formulation, where the 
system does not merely accumulate data but 
optimizes the utility of decisions under con-
straints defined by service-level objectives—
response latency, availability, and model ac-
curacy. Pedagogical goals (timely interven-
tions, reducing the risk of underperformance, 
supporting individualized learning trajecto-
ries) are thus directly linked to the technical 
characteristics of the cloud infrastructure, 
representing an important step toward a holis-
tic understanding of the educational platform. 

To realize the described cognitive cy-
cle in a real high-load environment, the sys-
tem must support asynchronous event flows, 
isolated domain services, independent scal-
ing, and a strictly organized lifecycle of ma-
chine-learning models. This requirement 
motivated the development of a micro-
service-based cloud-oriented architecture in 
which mathematical dependencies are 
mapped to concrete technical implementa-
tions—services, data stores, communication 
channels, and scaling policies. 

A key result of the study is that MLOps 
is not an auxiliary component of the architec-
ture but constitutes its core. The integration of 
Kubeflow, MLflow, and Vertex AI provides 
automatic model retraining under data drift, 
experiment management, canary deployments, 
and rollback procedures in case of quality deg-
radation. These capabilities enable continuous 
self-adjustment of models and restoration of 
target SLO indicators based on ongoing evalu-
ation of system state. 

The proposed approach demonstrates 
how intelligent methods acquire practical 
meaning within the structural components of 
microservice implementation and MLOps-
based lifecycle organization. The practical 
potential of such a DSS spans university 
platforms, corporate training systems, and 
national educational infrastructures requiring 
scalability, personalization, reliability, and 
transparency in AI-model operation. 

Future research directions include the 
integration of multimodal data and the de-
velopment of dynamic knowledge graphs, 
which would enable a transition from isolat-

ed recommendations to deep adaptation of 
learning trajectories. Overall, the presented 
cloud-oriented microservice DSS can serve 
as a foundation for a new class of intelligent 
educational ecosystems that combine engi-
neering rigor, cognitive coherence, and a 
human-centric perspective as the core of the 
learning process. 
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ArtamonovY.B., KukharY.I., PlotytsiaS.V., SkochynskyiB.D., YanytskaL.P. 

INTELLIGENT APPROACHES TO DESIGNING CLOUD-ORIENTED DECI-
SION-SUPPORT SYSTEMS IN EDUCATION 

The article presents a comprehensive approach to designing an intelligent cloud-
oriented decision-support system (DSS) for the educational domain, combining the principles 
of microservice architecture, cognitive modelling, and machine-learning operations. The rel-
evance of the study is justified by the growing volume of educational data, the need for per-
sonalized learning trajectories, and the necessity to maintain stable SLO indicators under 
dynamically changing learning conditions. The analysis of current research highlights the 
limitations of traditional monolithic LMS platforms, which lack sufficient flexibility, scalabil-
ity, and capabilities for integrating intelligent models. 

The proposed system architecture is based on event-driven microservice interaction via 
Kafka and incorporates modules for collecting and normalizing learning events, a feature-
engineering subsystem, recommendation and risk-prediction services, and a dedicated pipe-
line for modelling and monitoring ML components. The results of the study demonstrate that 
combining microservice decomposition with intelligent data-analysis methods improves rec-
ommendation accuracy, enhances performance indicators, and ensures the resilience of the 
educational platform under high load. The presented architecture can serve as a foundation 
for building scalable and adaptive next-generation educational ecosystems. 

Keywords: decision-support system, microservice architecture, educational data analyt-
ics, MLOps lifecycle, adaptive learning systems. 
Артамонов Є.Б., Кухар Є.І., Плотиція С.В., Скочинський Б.Д., Яницька Л.П. 
ІНТЕЛЕКТУАЛЬНІ ПІДХОДИ ДО ПРОЄКТУВАННЯ ХМАРНО-ОРІЄНТО-
ВАНИХ СИСТЕМ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ В ОСВІТІ 

У статті представлено комплексний підхід до проєктування інтелектуальної 
хмарно-орієнтованої системи підтримки прийняття рішень (СППР) у сфері освіти, в 
якій поєднано принципи мікросервісної архітектури, когнітивного моделювання та 
операції машинного навчання. Актуальність роботи обґрунтована зростанням мас-
штабів освітніх даних, потребою в персоналізованих навчальних траєкторіях та необ-
хідністю забезпечення стабільних SLO-показників у динамічних умовах навчального 
процесу. Аналіз сучасних досліджень виявив обмеження традиційних монолітних LMS, 
які не забезпечують достатньої гнучкості, масштабованості та можливостей інте-
грації інтелектуальних моделей. 

Запропонована архітектура система ґрунтується на подієво-орієнтованій 
взаємодії мікросервісів через Kafka та включає модулі збору й нормалізації навчальних 
подій,  підсистему формування ознак, сервіси рекомендацій та прогнозування ризиків, а 
також окремий контур моделювання та моніторингу ML-компонентів. Результати 
дослідження демонструють, що поєднання мікросервісної декомпозиції з інтелекту-
альними методами аналізу даних підвищує точність рекомендацій, покращує показни-
ки продуктивності та забезпечує стійкість освітньої платформи за умов високого 
навантаження. Представлена архітектура може бути використана як основа для 
створення масштабованих та адаптивних освітніх екосистем нового покоління. 

Ключові слова: система підтримки прийняття рішень, мікросервісна архітек-
тура, аналітика освітніх даних, життєвий цикл MLOps, адаптивні навчальні системи. 

 
  


