Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 11

UDK 004.78

DOI: 10.18372/2073-4751.83.20545

'Artamonov Y.B.,
orcid.org/0000-0002-9875-7372,
*Kukhar Y.L,
orcid.org/0009-0000-7150-6672,
*Plotytsia S.V.,
orcid.org/0009-0007-3323-9316,
*Skochynskyi B.D.,
orcid.org/0009-0004-0603-8883,
> Yanytska L.P.,
orcid.org/0009-0007-1728-8599,

INTELLIGENT APPROACHES TO DESIGNING CLOUD-
ORIENTED DECISION-SUPPORT SYSTEMS IN EDUCATION

2State University "Kyiv Aviation Institute",’Grid Dynamics Holdings,
*TarasShevchenkoNationalUniversityofKyiv, *Luxoft USA Inc.

e-mail: eart@kai.edu.ua,
e-mail: yehor.kukhar@gmail.com,
e-mail: stepan@plotytsia.com,
e-mail: bogdanskochynskyi@gmail.com,
e-mail: lesiayanytska@gmail.com

Introduction

The digital transformation of education
is accompanied by the active adoption of
cloud technologies, analytical systems, and
intelligent services that support managerial,
pedagogical, and learning-related decision-
making processes [1, 2, 3, 4]. Within the
context of the evolution toward Industry 5.0
and human-centric Society 5.0, educational
platforms must provide not only access to
knowledge but also dynamic personalization,
adaptation to individual learner
characteristics, and continuous self-
improvement of their internal algorithms [1,
5]. Achieving these capabilities requires
intelligent ~ architectures capable of
integrating principles of cloud computing,
machine learning, and cognitive modelling.

Traditional monolithic learning
management systems (LMS) demonstrate
limited scalability, weak support for
integrating external analytical modules, and
the need for manual updates of internal
components, which collectively reduce
system reliability and performance. As
demonstrated in recent studies [6, 7, 8], a
microservice architecture represents an

effective approach to building contemporary
distributed educational platforms, as it
ensures service independence, flexibility of
updates, and high fault tolerance. This
architectural ~ paradigm enables the
integration of ML/AI modules as separate
services, reducing the complexity of model
lifecycle management and improving quality
control mechanisms.

At the same time, advancements in
MLOps technologies have created new
opportunities for automating model training,
testing, and deployment in production
environments. A systematic review [9]
confirms that combining MLOps practices
with microservice-based architecture enables
continuous model improvement (continuous
training), detection of data drift, and
seamless integration of AutoML tools [10].
These capabilities are particularly important
for educational systems, where learning data
streams are dynamic and context-dependent,
and the performance of predictive models
relies on the continual updating of their
parameters.

12 IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

The relevance of this study lies in the
need to develop an intelligent cloud-oriented
decision-support system (DSS) based on
microservice architecture, equipped with
integrated MLOps mechanisms and self-
optimizing machine-learning pipelines.

The research problem spans three
interconnected dimensions: architectural
optimization (transition from monolithic to
microservice solutions), intellectualization of
analytics (integration of ML and AutoML)
and cognitive support for decision-making
(embedding explainable and adaptive models
into learning processes).

Analysis of Research

In contemporary educational practice,
decision-support systems (DSS) are
increasingly implemented, typically relying
on analytical dashboards, statistical modules,
and models for predicting learning outcomes.
However, most existing systems remain
fragmented, primarily oriented toward
descriptive analytics and lacking a full
cognitive decision-making cycle.

An examination of current solutions [2,
3, 4, 11] shows that the majority of
educational platforms do not incorporate
unified methods for cognitive decision
support at either the instructor level or the
course-management level. Existing
adaptation algorithms are generally limited
to content filtering or statistical
recommendations, without taking
behavioural or cognitive factors into account.
To transition toward intelligent DSS, it is
necessary to integrate neuro-symbolic
models, fuzzy logic, Bayesian inference, and
multi-agent systems capable of explaining
their decisions and interacting with
pedagogical parameters of the learning
process [3, 4, 12].

A further challenge is ensuring
efficient management of computational
resources and containerized components in
cloud environments. As highlighted in [13,
14], automated scaling of Kubernetes
clusters and load balancing across services
significantly affect the performance of
educational platforms and help reduce
operational costs under high concurrency.

Nevertheless, even under these conditions,
the problem of optimizing inter-service
communication persists: communication
delays may degrade system responsiveness
unless well-designed asynchronous
interaction mechanisms are implemented
[15-19].

Recent studies emphasize that effective
DSS operation requires the integration of
heterogeneous data sources and the use of
flexible, scalable architectures [11, 13]. For
example, [11] demonstrates the application
of microservice architecture in e-learning
systems to support personalized access to
educational materials and rapid adaptation to
changes in the learning process. However,
these approaches still fall short of fully
addressing predictive analytics and
recommendation mechanisms, which are
essential for next-generation DSS.

The problem of intellectualizing
decision-making processes in education is
further explored in [2, 4], which show that
combining data analytics with cognitive

models improves the accuracy and
adaptability of decision-support systems.
Practical implementation of such

models within scalable cloud environments
faces several technical barriers: the need for
continuous model monitoring, retraining,
fault tolerance, and integration with real-time
data streams. To address these challenges,
[14] proposes mechanisms for dynamic
resource scheduling and load distribution
across microservices, ensuring stable
operation of ML components within cloud-
based DSS.

A growing body of research focuses on
cloud computing as a foundational
technology for building scalable DSS.
Studies [13, 14] examine the performance of
container management approaches in
Kubernetes and other cloud-native platforms,
demonstrating that optimizing scaling
policies and resource orchestration directly
affects the efficiency of educational analytics
systems.

Another relevant line of research
concerns ensuring the reliability and
resilience of critical information systems,

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 13

which is crucial for educational platforms
with stringent requirements for security and
continuous operation. In [20], a multi-level
unified data model for cybersecurity in
aviation information systems is proposed,
based on hierarchical structuring and
controlled subsystem interaction. Similarly,
[22] explores methods for assessing the
criticality of failures in complex information
infrastructures, focusing on risk models and
analyses of catastrophic scenarios. Applying
these principles to the educational domain
enables the development of DSS capable of
self-diagnosis, failure prediction, and
strategic response planning in cases of
system faults or data loss.

In addition, [21] presents a systematic
methodology for assessing the transition
from monolithic architectures to
microservices, offering criteria for evaluating
performance, reliability, and operational
resilience. Their framework facilitates
formalization of decomposition processes,
identification of critical dependency points,
and minimization of migration-related risks.
Given that modern educational platforms
increasingly integrate ML modules,
analytical services, and personalization
components, structured migration strategies
become crucial for ensuring controllability
and predictability of system behaviour.

Within this context, microservice
architecture enables the separation of
decision-making logic from operational
infrastructure, allowing independent
component updates and seamless integration
with MLOps processes [15, 19, 23]. In
particular, [23] demonstrates that combining
microservices with automated ML pipelines
reduces system response time by 40% and
increases model accuracy by 20% compared
to monolithic solutions.

Modern DSS require the integration of
structured and unstructured educational data
into a unified analytical environment. To
achieve this, Data Warehouse and Data Lake
models are employed together with intelligent
agents responsible for automatic data
collection, cleansing, and contextual
interpretation. Studies [15, 18] indicate that

such integration not only enhances the
accuracy of predictive models but also
improves transparency by enabling traceability
of data sources and inference logic.

Recent advances in cognitive
modelling propose transferring principles of
human reasoning into algorithmic
frameworks for educational DSS. The use of
Bayesian networks, fuzzy systems, and
hybrid (symbolic and subsymbolic) Al
enables the development of explainable
artificial intelligence (XAI), which is
essential in educational contexts.

As noted in [16, 18, 23], combining
cognitive models with cloud infrastructure
and MLOps tools enables adaptive decision
support, where the system not only predicts
outcomes but also explains its conclusions to
users — teachers, administrators, or students.

MocmaHoeka npo6remu

The purpose of this study is to identify
an architectural solution for synthesizing
methods of intelligent data analysis in the
development of an intelligent cloud-oriented
decision-support system (DSS) for
education. Such a system must be capable of
self-optimizing ML pipelines, scaling
dynamically, and maintaining SLO (service
level objective) thresholds under variable
learning workloads [13, 14, 23].

Formally, for a set of learning events
{E}, users {U}, and decisions {D}, the
system must maximize the expected utility of
decisions subject to performance and
reliability constraints:

maxE, o.p[U(d =n(u.e),u.e)]
nell

latency(n) < L'
availability(n) > A"

<
cost(m)<C ()
wherer — denotes the decision-making policy
(service orchestration and model inference);
U — represents domain-specific utility (e.g.,
improved academic performance or timely
pgdagogi*cal interventions);
L ,A4,C —SLO thresholds (for example, for
API Latency SLO: 95% of requests must
complete within <200 ms; for Availability

14 IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

SLO: the platform must operate >99.9% of
the time; for ML Model Accuracy SLO: rec-
ommendation accuracy >0.82).

Under this formulation, the intelligent
DSS, at the Observation stage, collects data
from various sources: LMS activity logs,
user feedback, assessment results, sensor
inputs, and behavioural signals. These form
the incoming information stream o,.

The Orientation stage involves con-
structing a cognitive representation of the
context, i.e., the knowledge set K; that de-
scribes the current state of the learning envi-
ronment:

Kl:forient(Kt—l ’Ol‘), (2)

where f,,in/() — function responsible for ag-
gregating, filtering, and normalizing incom-
ing signals.

Following this, the system proceeds to
the Decision stage, in which an action d; is
selected from the set of available alterna-
tives D.

The final stage, Action, implements the
chosen decision through the corresponding
service of the platform (e.g., recommending
educational content or initiating an instructor
intervention), generating new observations
and closing the cognitive adaptation
loop [12].

To analyze and categorize educational
data within the DSS, classical machine-
learning algorithms are applied to ensure
both interpretability and predictive accuracy.

A Decision Tree constructs a sequence
of attribute-based questions that minimize
information entropy; Random Forest aggre-
gates results from multiple trees, increasing
robustness to noise and overfitting; and Gra-
dient Boosting minimizes the error of the
previous ensemble by sequentially construct-
ing weak learners/,,(x):

Fm(x):mel(x)—'—V hm(x)s (3)

wherev —a learning rate;
hn(x) —a regression function selected based
on the loss gradient.

Within the educational context, these
algorithms enable automatic identification of
at-risk student groups, prediction of potential
underperformance, assessment of the impact

of student activity on outcomes, and
generation of personalized content
recommendations.

Learning-outcome forecasting is a key
component of cognitive DSS. Regression
and time-series models are commonly
employed.

ARIMA(p,d,q) and LSTM models are
used to analyze temporal patterns of student
activity, allowing the system to forecast
engagement fluctuations, detect declines in
motivation, and automatically propose
corrective measures [14].

Integrating predictive models into the
MLOps lifecycle of the cloud architecture
ensures their automatic retraining under data

drift, a critical requirement in highly
dynamic learning environments.
However, the formal optimization

model alone does not define how such
functionality can be implemented in a real
high-load educational system. This
necessitates intelligent approaches that
combine artificial-intelligence methods (ML,
AutoML, NAS), cognitive decision-support
models, and MLOps principles.

For instance, the orientation model (2)
requires aggregation, normalization, and
storage services capable of constructing the
cognitive state K, The gradient boosting
scheme (3) requires an execution environment
supporting repeated retraining, version control,
and performance monitoring. The optimization
problem (1) can only be solved when the
policy m is materialized as a set of services
responsible for observation, decision-making,
and user interaction while maintaining SLO
constraints.

Thus, the mathematical formulation
directly imposes architectural requirements for
the system: asynchronous event exchange,
component isolation, scalable deployment,
automated ML-pipeline management, and
mechanisms for monitoring model quality.
This justification motivates the next stage of
research — developing a microservice-based
cloud-oriented architecture capable of
implementing models (1)—3) and supporting a
complete cognitive cycle in a dynamic
educational environment.

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 15

ﬁjser Interfaces (Web/Mobile)

|

API Gateway / BFF

Ingestion Service

Profile Service

Feature Service

—»{ Recommendation Service

MLOps Layer: Kubeflow /
MLflow / Vertex Al

Event Bus (Kafka)

4{ Risk & Forecast Service

Model Serving (ML

*{ Monitoring & Drift Service
—)[Reporting & BI Service

Inference)

Data Storage: PostgreSQL /
Redis / Feature Store

Figure 1. The proposed architecture of a cloud-oriented decision-support
system in education

Design of a Microservice-Based
Cloud-Oriented Architecture

The architecture of the proposed cloud-
oriented decision-support system for
education (Fig. 1) is constructed according to
principles of microservice decomposition,
where each component performs a narrowly
focused, specialized function while
remaining integrated with others through
standardized protocols and an event-driven
messaging infrastructure.

At the upper level resides the user-
interface layer, which includes web and
mobile applications and provides interaction
for students, instructors, and administrative
users. All user requests are routed through an
API Gateway / Backend-for-Frontend (BFF),
responsible for authentication, authorization,
request routing, and enforcing centralized
access policies. The API Gateway serves as a
controlled entry point, reducing load on

internal services
integrations.
Requests are then forwarded to a set
of microservices implementing the system’s
domain logic. The Ingestion Service is
responsible for receiving and normalizing
educational, behavioural, and operational
data. These are subsequently processed by
the Profile Service, which maintains user
profiles and individual learning trajectories.
The Feature Service constructs machine-
oriented features for predictive and
recommendation models, interacting with
data sources and the MLOps subsystem.
The Recommendation Service handles
content-personalization requests and
learning-path generation, leveraging outputs
of machine-learning models. The Risk &
Forecast Service evaluates academic risks
(such as probability of dropout or low

and unifying external

16 IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

performance) and produces forecasts based
on historical data.

Model Serving provides real-time
deployment and execution of Al models and
operates as an independent component
responsible for low inference latency, scalable
behaviour, and hot model updates. The
Monitoring & Drift Service observes service
stability, analyses data and model drift, detects
anomalies, and triggers retraining procedures
in case of quality degradation. The Reporting
& BI Service provides analytical visualization,
management dashboards, and supports
decision-making at the instructor, faculty, or
administrative levels.

A key integration element of the
architecture is the Event Bus based on Kafka,
which ensures asynchronous message
exchange among microservices, traffic
isolation, and scalable interaction within an
event-driven model. Through Kafka, services
publish events, react to them, or initiate model
updates, feature generation, and analytical
workflows. This avoids tight coupling and
guarantees resilience to partial failures.

The MLOps Layer, comprising
Kubeflow, MLflow, and Vertex Al,
orchestrates the construction, versioning,
preparation, and optimization of ML
pipelines; automatic model retraining;
performance evaluation; and experiment
tracking. This layer enables continuous
model evolution without user intervention
and interacts with the Feature Service,
Recommendation Service, Monitoring &
Drift Service, and Model Serving through
automated pipelines.

The data-storage subsystem includes
PostgreSQL for transactional operations,
Redis for caching and high-speed event
processing, and a centralized Feature Store
as a unified source of consistent features for
models. Interaction with these components is
bidirectional: services read required data and
update it based on events arriving from
Kafka and UI modules.

From a logical standpoint, the DSS is
divided into four interrelated levels that form
a continuous cyclical loop: data — analytics —
decisions — feedback.

Data Ingestion Layerincorporates
connectors to LMS/LTI systems, mobile and
web clients, and external data sources
(testing platforms, video services, etc.). The
event stream 1is standardized using the
schema: event type, actor, context, payload,
timestamp. Asynchronous delivery through
Kafka minimizes coupling; synchronous
calls are limited to API Gateway
interactions.

Operational transactions of Data
Storage Layerare stored in PostgreSQL
(OLTP); telemetry time series are stored in a
metrics repository; hot data is cached in
Redis. Analytical snapshots and long event
histories are stored in a columnar database or
S3-compatible object storage for offline
computation. Features for ML are
maintained in a Feature Store to ensure
consistency between online and offline
pipelines.

Analytics & Decisions Layer includes

microservices responsible for feature
processing, model evaluation, online
recommendations, risk forecasting,

explainability (XAI), and data/model-drift
monitoring. Orchestration of ML pipelines is
also located here.

Presentation Layercomprises student
and instructor interfaces, administrative
dashboards, and reporting components. Data
is accessed through the BFF layer and
analytical APIs.

Microservice architecture adheres to
principles of loose coupling and independent

scalability:

— API Gateway: single entry point,
routing, rate-limiting, OAuth2/0IDC,
auditing;

— BFF (Backend-for-Frontend): sepa-
rate BFFs for student, instructor, and admin
interfaces, aggregating data from domain
services and reducing backend chatter;

— Ingestion Service: receives events

from clients/external sources, normalizes
them, and publishes to Kafka;
—Profile Service: wuser profiles,

learning trajectories, competence statuses;
CRUD operations in PostgreSQL with
Redis-accelerated reads;

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 17

— Feature Service: builds and serves
online features; synchronizes with the
Feature Store;

— Recommendation Service:
content recommendations; supports
experiments and canary model releases;

—Risk & Forecast Service:
scoring, performance forecasting,
intervention triggers;

— Model Serving: isolated instances for
model inference (REST/gRPC), versioning,
and traffic routing by model version;

— Monitoring & Drift Service: collects
performance metrics, detects data/concept
drift, initiates retraining;

— Reporting & BI Service: analytical
data marts, reporting APIs, export
mechanisms.

Critical domain events are transported
through Kafka topics such as:edu.activity.
logged (atomic learner actions),
ml.features.updated (feature updates),
ml.model.requested / ml.model.scored (model-
inference lifecycle), etc.

A typical user-action event contract in
JSON format:

online
A/B

risk
and

{
"event_type": "edu.activity.logged",
"actor id": "user-123",
"context": {"course id": "c-42",

"lesson_id": "1-7"},
"payload": {"action": "quiz.submit",
"score": 0.82, "duration_sec": 315},

"timestamp": "2025-11-
05T14:21:05Z2"

}

Observability is ensured by:

— OpenTelemetry for unified
logs/traces/metrics;

— Prometheus metrics with Grafana
visualization and logging through a
centralized logging stack;

—SLO/SLI parameters for critical
paths (latency p95, recommenda-
tion_hit@K, error rate, etc.).

Data-processing flows within the

decision lifecycle can be summarized as
follows:

1. A user event arrives at the Ingestion
Service and is published to Kafka.

2. The Feature Service updates online
features and synchronizes them with the
Feature Store.

3. The Recommendation Service calls
Model Serving, obtains recommendations,
and returns them through the BFF and UI.

4. The Monitoring & Drift Service
tracks performance metrics and publishes an
ml.drift.detected event in case of drift.

5. Kubeflow executes a training
pipeline, and MLflow registers a new model
version.

6. Canary deployment evaluates online
performance; promotion to production
occurs only if SLOs are met; otherwise,
automatic rollback is triggered.

7. Reporting & BI aggregates events
for management dashboards and official
reporting.

The overall analysis demonstrates that
architectural decisions, algorithmic compo-
nents, and data-processing flows reinforce one
another, establishing a robust foundation for a
DSS capable of adaptation, self-optimization,
and scalable operation in real educational
environments.

Conclusions

Contemporary educational platforms
have reached a point where traditional mono-
lithic LMS solutions can no longer adequately
respond to the dynamic nature of learning data,
the growing number of users, or the increasing
demand for personalization. The transition
toward an intelligent cloud-oriented decision-
support system in education requires a simul-
taneous rethinking of theoretical decision-
making models, architectural principles of
platform design, and the lifecycle of machine-
learning models. It is at the intersection of the-
se three dimensions—cognitive, architectural,
and MLOps-related—that the logic of the pro-
posed approach is formed.

The proposed DSS conceptualizes the
learning process as a cognitive cycle of ob-
servation—orientation—decision—action, where
each stage has a clearly defined informational
role. Learning events, behavioural signals,
and assessment results constitute an observa-
tional data stream, from which a dynamic
representation of contextual knowledge is

18 IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

constructed. This cognitive model underlies
the formal problem formulation, where the
system does not merely accumulate data but
optimizes the utility of decisions under con-
straints defined by service-level objectives—
response latency, availability, and model ac-
curacy. Pedagogical goals (timely interven-
tions, reducing the risk of underperformance,
supporting individualized learning trajecto-
ries) are thus directly linked to the technical
characteristics of the cloud infrastructure,
representing an important step toward a holis-
tic understanding of the educational platform.

To realize the described cognitive cy-
cle in a real high-load environment, the sys-
tem must support asynchronous event flows,
isolated domain services, independent scal-
ing, and a strictly organized lifecycle of ma-
chine-learning models. This requirement
motivated the development of a micro-
service-based cloud-oriented architecture in
which mathematical dependencies are
mapped to concrete technical implementa-
tions—services, data stores, communication
channels, and scaling policies.

A key result of the study is that MLOps
is not an auxiliary component of the architec-
ture but constitutes its core. The integration of
Kubeflow, MLflow, and Vertex Al provides
automatic model retraining under data drift,
experiment management, canary deployments,
and rollback procedures in case of quality deg-
radation. These capabilities enable continuous
self-adjustment of models and restoration of
target SLO indicators based on ongoing evalu-
ation of system state.

The proposed approach demonstrates
how intelligent methods acquire practical
meaning within the structural components of
microservice implementation and MLOps-
based lifecycle organization. The practical
potential of such a DSS spans university
platforms, corporate training systems, and
national educational infrastructures requiring
scalability, personalization, reliability, and
transparency in Al-model operation.

Future research directions include the
integration of multimodal data and the de-
velopment of dynamic knowledge graphs,
which would enable a transition from isolat-

ed recommendations to deep adaptation of
learning trajectories. Overall, the presented
cloud-oriented microservice DSS can serve
as a foundation for a new class of intelligent
educational ecosystems that combine engi-
neering rigor, cognitive coherence, and a
human-centric perspective as the core of the
learning process.

References
1. Adel A, Alani N.H.S. Human-
centric collaboration and Industry 5.0

framework in smart cities and communities:
fostering sustainable development goals 3, 4,
9, and 11 in Society 5.0. Smart Cities. 2024.
Vol. 7, 4. P. 1723-1775.
DOI:10.3390/smartcities 7040068

2. Chatzopoulou D.I.,, Economides
A.A. Adaptive assessment of student's
knowledge in programming courses. Journal
of Computer Assisted Learning. 2010. Vol.
26, 4, P. 258-269. DOI: 10.1111/j.1365-
2729.2010.00363 .x.

3. Melesko J, Kurilovas E. Personal-
ised intelligent multi-agent learning system
for engineering courses. 2016 I[IEEE 4th
Workshop on Advances in Information, Elec-
tronic and Electrical Engineering (AIEEE).
2016. DOI: 10.1109/AIEEE.2016.7821821

4. Kiristensen T., Dyngeland M. De-
sign and Development of a Multi-Agent E-
Learning System. 2015. International Jour-
nal of Agent Technologies and Systems. Vol.
7, 2, P. 19-74. DOLI:
10.4018/1JATS.2015040102

5. Yanytska L. The rise of human-
centric manufacturing in the industry 5.0 era.
Int J Adv Manuf Technol. 2025. Vol. 139. P.
5067-5077. DOI: 10.1007/s00170-025-
16192-5.

6. Di Francesco P., Lago P,
Malavolta 1. Architecting with micro-
services: A systematic mapping study. Jour-
nal of Systems and Software. 2019. P. 77-97.
DOI: 10.1016/j.jss.2019.01.001.

7. Marieska M.D., Yunanta A., Au-
liam H., Utami A.S. Rizqie M.Q. Perfor-
mance Comparison of Monolithic and Mi-
croservices Architectures in Handling High-
Volume Transactions. Jurnal RESTI
(Rekayasa Sistem Dan Teknologi Informasi).

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 19

2025. Vol. 9, 3. P.
10.29207/resti.v9i3.6183

8. Dragoni N., Lanese 1., Larsen
S.T., Mazzara M., Mustafin R., Safina L.
Microservices: How to make your applica-
tion scale. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics). 2017. 10742 LNCS, 95-104.
DOI: 10.1007/978-3-319-74313-4 8.

9. Zarour M., Alzabut H., Al-
Sarayreh K.T. MLOps best practices, chal-
lenges and maturity models: A systematic
literature review. Information and Software
Technology. 2025. Vol. 183. 107733. DOI:
10.1016/j.infsof.2025.107733.

10. Barbudo R., Ventura S., Romero
J.R. Eight years of AutoML: categorisation,
review and trends. Know! Inf Syst. 2023. 65.
5097-5149. DOI: 10.1007/s10115-023-
01935-1

11. Artamonov Y., Golovach 1., Zy-
movchenko V. Use analysis of microserves
in e-learning system with multi-variant ac-
cess to educational materials. Technology
Audit and Production Reserves. 2021. 4 (2
(60)), 45-50. DOI: 10.15587/2706-
5448.2021.237760.

12. Artamonov E.B, Zholdakov O.O.
Concept of creating a software environment
for automated text manipulation. Scientific
journal “Proceedings of the National Avia-
tion University”.2010 . Vol. 3 (44), 111-115.

13. FuY., GuS., Cheng L., Liu L. Per-
formance evaluation of resource management
schemes for cloud-native platforms with com-
puting containers. 2022 IEEE International
Performance, Computing, and Communica-
tions Conference (IPCCC). 2022. DOILI:
10.1109/ipcce55026.2022.9894300.

14. Mustyala A. Dynamic resource al-
location in Kubernetes: Optimizing cost and
performance. EPH — International Journal of
Science and Engineering. 2021. 7, 3.
DOI: 10.53555/ephijse.v7i3.237.

15. GonzalezS. Modular software de-
sign in distributed systems: Strategic ap-
proaches for building scalable, maintainable,
and fault-tolerant architectures in modern

594-600. DOI:

microservice environments. FEigenpub Re-
view of Science and Technology. 2023. 7, 1.
DOI: 10.1007/s10916-020-1195-x.

16. Hang Y., Xiulei W., Changyou X.,
Bo X. A Microservice Resilience Deploy-
ment Mechanism Based on Diversity. Secu-
rity and Communication Networks. 2022.
7146716. DOI: 10.1155/2022/7146716.

17. Kazanavicius J.,& Mazeika D. The
Evaluation of Microservice Communication
While Decomposing Monoliths. Computing
and Informatics. 2023. 42(1), 1-36.
DOI: 10.31577/cai_2023 1 1

18. MejiaP. Best practices for micro-
service framework design. Advances in Intel-
ligent Information Systems. 2022. 7, 1. URL:
https://questsquare.org/index.php/JOURNAL
AllS/article/view/70.

19. Bravetti M., Giallorenzo S., Mau-
ro J., Talevi L., Zavattaro G. Optimal and
automated deployment for microservices.
Fundamental Approaches to Software Engi-
neering.2019 .351-368. DOI: 10.1007/978-
3-030-16722-6 _21.

20. Gnatyuk S. Multilevel Unified Da-
ta Model for Critical Aviation Information
Systems Cybersecurity. 2019 IEEE 5th In-
ternational Conference Actual Problems of
Unmanned Aerial Vehicles Developments
(APUAVD,). 2019. 242-247. DOI:
10.1109/APUAVD47061.2019.8943833.

21. Auer F., Lenarduzzi V., Felderer
M., Taibi D. From monolithic systems to
Microservices: An assessment framework.
Information and Software Technology. 2021.
Vol. 137.

22. Gnatyuk S., Sydorenko V., Poli-
henko O., Sotnichenko Y., Nechyporuk O.
Studies on the disasters criticality assessment
in aviation information infrastructure. CEUR
Workshop Proceedings. 2020. 282-296.
ISSN: 16130073.

23. Artamonov Y.B., Plotytsia S.V.,
Radchenko K.M., Kotsiur A.B. Microservice
Architecture of Intelligent Educational Plat-
forms with ML Pipeline Self-Optimization.
Science and technology today. 2025. 10, 51 P.
1059-1073. DOI: 10.52058/2786-6025-2025-
10(51)-1059-1073.

20 IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

ArtamonovY.B., KukharY.l., PlotytsiaS.V., SkochynskyiB.D., YanytskaL.P.

INTELLIGENT APPROACHES TO DESIGNING CLOUD-ORIENTED DECI-
SION-SUPPORT SYSTEMS IN EDUCATION

The article presents a comprehensive approach to designing an intelligent cloud-
oriented decision-support system (DSS) for the educational domain, combining the principles
of microservice architecture, cognitive modelling, and machine-learning operations. The rel-
evance of the study is justified by the growing volume of educational data, the need for per-
sonalized learning trajectories, and the necessity to maintain stable SLO indicators under
dynamically changing learning conditions. The analysis of current research highlights the
limitations of traditional monolithic LMS platforms, which lack sufficient flexibility, scalabil-
ity, and capabilities for integrating intelligent models.

The proposed system architecture is based on event-driven microservice interaction via
Kafka and incorporates modules for collecting and normalizing learning events, a feature-
engineering subsystem, recommendation and risk-prediction services, and a dedicated pipe-
line for modelling and monitoring ML components. The results of the study demonstrate that
combining microservice decomposition with intelligent data-analysis methods improves rec-
ommendation accuracy, enhances performance indicators, and ensures the resilience of the
educational platform under high load. The presented architecture can serve as a foundation
for building scalable and adaptive next-generation educational ecosystems.

Keywords: decision-support system, microservice architecture, educational data analyt-
ics, MLOps lifecycle, adaptive learning systems.

AptamonoB €.b., Kyxap €.1., Ilnotuuis C.B., Ckouuncbknii b./1., Annubka JLIIL.

IHTEJIEKTYAJIbHI IIAXOAU 10 IPOEKTYBAHHS XMAPHO-OPIEHTO-
BAHUX CUCTEM NIATPUMKHU NPUUHATTSA PIINEHDb B OCBITI

Y cmammi npeocmaeneno komnaexcuuii nioxio 0o npoEKmMy6aHHs IHMENEeKMYanbHOI
XMApHO-0piEHMOBaHOI cucmemu niompumxu nputnamms piwens (CIIIIP) y cgepi oceimu, 6
AKIN NOEOHAHO NPUHYUNU MIKPOCEPBICHOI apXimeKkmypu, KOSHIMUBHO20 MOOeN08AHH Mda
onepayii MAWUHHO20 HABYAHHA. AKmyanvHicmb pobomu OOIPYHMOBAHA 3POCMAHHAM MAcC-
wmaobie 0ceimHix OaHux, NompeboI0 8 NEPCOHANI308AHUX HABYALHUX MPAEKMOPIAX MA He0O-
Xionicmio 3abe3neuenus cmaoitvnux SLO-noKa3nuxie y OUHAMIYHUX YMOBAX HABUANbHOZO
npoyecy. AHaniz cy4acHux 00cniodceHb UABUE 0OMedCceHHs T MPaouyitinux Mmonoaimuux LMS,
AKI He 3a0e3neuyroms 00CMaAmHbOI 2HYYKOCMI, MACUMAOOB8AHOCMI MA MOICTUBOCMELU IHMe-
epayii inmenexmyanbHux mooenel.

3anpononosana apximekmypa cucmema IPYHMYEMbCSA HA NOOIEE0-OPIEHMOBAHIN
83aemo0ii mikpocepsicie uepez Kafka ma exniouae mooyni 300py i Hopmanizayii HA8UAIbHUX
nooii, niocucmemy opmy68aHHsa 03HAK, CEP8iCU PeKOMEeHOayill ma NPOSHO3YE8AHHS PUSUKIE, 4
MAKOJIC OKpeMull KOHMyp MoOenoeants ma monimopun2y ML-komnonenmis. Pezynomamu
00CNI0AHCEHHS OeMOHCMPYIOMb, WO NOEOHAHH MIKPOCEPBICHOI OeKoMno3uyii 3 iHmenexmy-
ANbHUMU MEMOOaMU AHanizy OAHUX NIOBUWYE MOYHICMb PeKOMeHOayil, NOKPauye NOKA3HU-
KU NpoOyKmMueHocmi ma sabe3nevye CMiluKicms OCEIMHbOI NAAmM@opmu 3a YMOE BUCOKO20
Hasanmaoicenns. llpeocmaenena apximexmypa modce Oymu GUKOPUCMAHA AK OCHO8A Ols
CMBOPEHHS MACUmMado8aHUx ma a0anmueHUX OCEIMHIX eKOCUCIEM HOBO020 NOKONIHHL.

Knrwouosi cnosa: cucmema niompumku nputiHamms piuienb, MiKpOCep8iCHA apXimek-
mypa, aHanimuxka oceimuix oanux, scummeeuii yuxi MLOps, adoanmusHi HaguanbHi cucmemu.

