Event-driven edge processing model for industrial IoT systems

Authors

DOI:

https://doi.org/10.18372/2073-4751.83.20544

Keywords:

edge computing, іndustrial IoT, event-driven architecture, anomaly detection, contextual processing, real-time decision-making, real-time decision, cyber-physical systems

Abstract

Efficient and reliable cold chain management requires rapid detection and interpretation of temperature deviations, equipment anomalies, and operational disturbances. Traditional IoT-based monitoring architectures rely heavily on cloud connectivity, resulting in latency, reduced autonomy, and limited resilience in time-critical situations. This paper proposes an event-driven processing logic integrated into an edge computing architecture for intelligent cold chain logistics platforms.
The model introduces a structured four-tuple event representation, a deviation descriptor for quantifying abnormal behaviour, an adaptive severity classification function, and a rule-based edge decision mechanism. Formulas (1)–(4) formalize the transformation of raw sensor measurements into contextualized events, analytically evaluated deviations, severity levels, and real-time edge-level actions.
Modelling results using realistic temperature trajectories—stable control, slow thermal drift, and door-abuse patterns—demonstrate the model’s ability to distinguish benign fluctuations from harmful deviations, escalate severity dynamically, and operate autonomously during connectivity interruptions. The proposed approach significantly enhances responsiveness, resilience, and operational reliability of cold chain monitoring systems.

References

Чмир О. С., Лисенко В. С. Інтернет речей як інструмент підвищення ефективності логістичних процесів. Сучасні інформаційні технології у сфері безпеки та оборони. 2021. № 2. С. 45–52.

Костенко О. М., Гуменюк С. О. Технології IoT у моніторингу холодового ланцюга постачання. Вісник Національного транспортного університету. 2022. № 1. С. 112–119.

Яценко В. О., Дишлевий М. І. Бездротові сенсорні мережі в системах збору телеметричної інформації логістичних підприємств. Наукові праці ОНАХТ. 2020. № 3. С. 87–95.

Simchi-Levi D., Snyder L. V. Digital transformation in supply chain management: the role of real-time data. MIT Working Paper. 2022. 28 p.

Rejeb A., Rejeb K., Keogh J. G. Internet of Things in supply chain management: a comprehensive review. International Journal of Information Management. 2020. Vol. 52. P. 102–117.

Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems. 2013. Vol. 29(7). P. 1645–1660.

Satyanarayanan M. The emergence of edge computing. Computer. 2017. Vol. 50(1). P. 30–39.

Perera C., Zaslavsky A., Christen P., Georgakopoulos D. Context-aware computing for the Internet of Things: A survey. IEEE Communications Surveys & Tutorials. 2014. Vol. 16(1). P. 414–454.

Verdouw C. N., Wolfert S., Beulens A. J. M. Smart agri-food logistics: real-time monitoring of storage and distribution. Journal of Food Engineering. 2016. Vol. 176. P. 34–41.

Akkad M., Döllner J. Event-driven architectures for real-time IoT systems. Procedia Computer Science. 2021. Vol. 184. P. 208–215.

Wolfert S., Ge L., Verdouw C. N. Big data in smart farming and logistics. Computers and Electronics in Agriculture. 2017. Vol. 142. P. 137–153.

Голубнича Л., Мандзій Б., Миськів С. Інформаційно-аналітичні системи контролю логістичних процесів. Науковий вісник НЛТУ. 2020. № 30(4). С. 125–132.

Downloads

Published

2025-12-19

Issue

Section

Статті