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Introduction 
Efficient management of critical 

infrastructure assets is essential for ensuring 
operational continuity, minimizing 
downtime, and maintaining safety across 
energy, transport, manufacturing, and other 
industrial sectors. Even short-term 
deviations in environmental, technological, 
or operational parameters may lead to 
substantial financial losses, equipment 
failures, or increased risks to personnel and 
consumers. Traditional IoT-based 
monitoring systems provide real-time 
telemetry but remain heavily dependent on 
cloud connectivity. This dependency 
introduces several limitations: latency, 
unstable communication channels, limited 
on-site autonomy, and insufficient reaction 
speed in time-critical scenarios. 

Recent studies show that shifting data 
processing to the edge layer significantly 
improves system responsiveness, resilience, 
and adaptability. Edge nodes are capable of 
performing real-time filtering, anomaly 
detection, event classification, and local 
decision-making directly at the point where 
industrial data is generated. However, 
existing IIoT platforms for monitoring 
critical infrastructure still predominantly 
rely on static rule-based logic or cloud-
centric processing. As a result, they lack 
context awareness, dynamic event 
prioritization, and the ability to operate 
autonomously during connectivity 
disruptions. 

These challenges highlight the need 
for an intelligent, event-driven edge 
computing architecture capable of 
interpreting contextual information, 
classifying industrial events by their 
criticality, and executing on-site decisions in 
real time. Such an approach enhances the 
resilience of critical infrastructure, reduces 
operational delays, and forms a more 
accurate, robust, and autonomous 
monitoring ecosystem for the industrial 
Internet of Things. 

Problem Statement 
The aim of this research is to develop 

an event-driven data processing logic 
within an edge-oriented architecture 
designed for intelligent cold chain logistics 
management. To achieve this aim, the 
following objectives are defined: 

1. Analyze the operational chara-
cteristics of cold chain logistics and 
identify the types of critical events that 
influence product quality and safety. 

2. Investigate modern IoT and edge
computing architectural approaches, 
revealing their limitations in terms of 
latency, autonomy, scalability, and 
adaptability under real operating conditions. 

3. Develop a model of event
processing logic that provides: 

 contextual interpretation of parameter 
deviations; 

 dynamic classification of events based 
on their severity; 

 local decision-making at the edge node; 
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 minimized dependency on cloud service 
stability. 

Event Processing Logic Model for 
Intelligent Cold Chain Management 

The event processing logic operates 
directly on the edge node, where sensor 
measurements are received continuously. To 
ensure structured interpretation, each event 
is represented as a four-component tuple 
shown in formula (1): 

 
Where: 
— timestamp of the measurement; 
— sensor or source identifier; 
— observed value (temperature, 

humidity, vibration, door state, etc.); 
— context vector containing 

operational metadata relevant to the event. 
The context vector provides 

additional semantics: current operating 
mode (loading, steady-state, defrost), recent 
measurement history, refrigeration cycle 
state, ambient temperature, and operational 
flags such as door status or scheduled 
activity windows. This allows the system to 
interpret the same numerical deviation 
differently depending on operational 
circumstances. 

To quantify how strongly an event 
deviates from expected behaviour, the 
system computes a deviation descriptor, 
defined in formula (2): 

 
Where: 

— magnitude of the deviation 
relative to the contextual baseline; 

— duration for which the 
deviation persists; 

— direction and rate of change 
(increasing, decreasing, oscillatory); 

— correlation with other 
parameters or events (e.g., compressor off 
while temperature rising). 

This descriptor enables the model to 
detect both abrupt anomalies and emerging 
patterns such as slow temperature drift or 
oscillatory instability. 

Based on the deviation descriptor and 
the context vector, the severity level of the 

event is determined according to formula 
(3): 

 
Where: 

— adaptive classification 
function; 

— resulting severity level 
(informational, warning, critical, or 
emergency). 
Severity is not fixed but adapts over 

time according to rolling statistics, operator 
feedback and cloud-provided configuration 
updates. 

After the severity level is determined, 
the edge node selects a suitable local 
reaction. This decision process is expressed 
in formula (4): 

 
Where: 

— decision rule mapping a severity 
level and event type to an action; 

— resulting action executed locally 
on the edge node; 

event_type — identifier of the 
anomaly (temperature deviation, compressor 
anomaly, door event, route deviation, etc.). 

Possible actions include recording 
detailed logs, generating alerts, triggering 
local alarms, applying safety constraints, or 
synchronizing results with cloud services 
once connectivity is restored. 

To minimize dependency on cloud 
stability, the system employs local 
buffering, deferred synchronization, and 
compact configuration updates. Long-term 
analytics, parameter tuning, adaptive 
threshold recalculation and rule set updates 

Level 3 

Edge Decision and Reaction  Decision Logic → Local Action  

Level 2: 

Event Interpretation Deviation Analysis → Severity 
Classification  

Level 1 

Event Formation  Sensor Data → Event 
Representation → Context  
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are performed in the cloud and transmitted 
back to the edge node as lightweight 
profiles, ensuring continuous operation 
regardless of connectivity. 

Figure. Hierarchical organization of 
the event processing logic. 

The structured representation in Fig. 
X illustrates how the proposed event 
processing logic is organized into three 
hierarchical levels, showing the sequential 
transformation of raw sensor inputs into 
enriched events, analytical interpretations, 
and finally edge-level decisions. This 
layered view clarifies the internal 
workflow of the model and highlights the 
functional role of each stage within the 
overall event processing pipeline. 

In summary, formulas (1)–(4) 
collectively define the proposed event 
processing logic model, which formalizes 
how raw sensor readings are transformed 
into contextualized events, how deviations 
are quantified, how severity levels are 
dynamically determined, and how 
appropriate edge-level actions are selected. 
This formal structure constitutes the core of 
the model and distinguishes it from 
conventional threshold-based approaches. 

Illustrative Scenario and 
Modelling Results for Cold Chain 
Event Processing 

This section provides a concise 
scenario demonstrating how the proposed 
event processing logic operates under 
realistic cold-chain transportation 
conditions. The example illustrates the 
transformation of raw sensor readings into 
contextualized events, deviation descriptors, 
severity levels, and ultimately edge-level 
actions. 

Modelling Tools and Methods 
The modelling process used a 

combination of historical cold-chain 
telemetry and synthetic perturbations. 
Historical datasets from refrigerated 
vehicles provided realistic thermal 
dynamics, noise characteristics, and 
compressor behavior. Synthetic time-
series components were generated to 
emulate rare or developing failure modes 

such as progressive compressor 
underperformance or weak sensor 
correlation. 

All event tuples, deviation 
descriptors, and severity classifications 
were computed using Python-based scripts 
(NumPy, Pandas, SciPy). Temperature 
trajectories were reproduced using 
controlled perturbations to baseline data, 
preserving thermal inertia and ambient 
influence. Visual inspection and statistical 
evaluation of the trajectories were 
performed using Matplotlib and standard 
signal-processing utilities. This 
combination ensured realistic 
representation of cold-chain operational 
conditions while enabling controlled 
evaluation of the event processing logic. 

Scenario Description 
To illustrate the practical application 

of the proposed model, consider a 
refrigerated vehicle transporting frozen 
goods (−18°C setpoint) along a 120 km 
route. The edge node inside the vehicle 
continuously collects temperature, 
compressor activity, ambient conditions, and 
door status readings. 

At time , the system operates within 
normal limits:internal temperature −18.3°C, 
compressor on, door closed, ambient +4°C. 

At time , a small upward drift 
begins. The temperature increases to 
−17.6°C while the compressor continues 
cycling normally. A threshold-based system 
would not classify this as abnormal. 

At time , the drift accelerates: 
temperature −16.7°C, compressor cycles 
become irregular, and the correlation 
between compressor state and temperature 
response decreases. 

At time , the temperature reaches 
−15.8°C while compressor output becomes 
insufficient. Despite being within acceptable 
regulatory limits, the deviation pattern 
indicates an emergent equipment 
malfunction. 

Using formula (1), each reading is 
represented as an event 
where includes the thermal history, 

minimized dependency on cloud service
stability.

Event Processing Logic Model for
Intelligent Cold Chain Management

The event processing logic operates
directly on the edge node, where sensor
measurements are received continuously. To
ensure structured interpretation, each event
is represented as a four-component tuple
shown in formula (1):

Where:
— timestamp of the measurement;
— sensor or source identifier;
— observed value (temperature,

humidity, vibration, door state, etc.);
— context vector containing

operational metadata relevant to the event.
The context vector provides

additional semantics: current operating 
mode (loading, steady-state, defrost), recent
measurement history, refrigeration cycle
state, ambient temperature, and operational
flags such as door status or scheduled
activity windows. This allows the system to
interpret the same numerical deviation
differently depending on operational
circumstances.

To quantify how strongly an event
deviates from expected behaviour, the
system computes a deviation descriptor,
defined in formula (2):

Where:
— magnitude of the deviation

relative to the contextual baseline;
— duration for which the

deviation persists;
— direction and rate of change

(increasing, decreasing, oscillatory);
— correlation with other 

parameters or events (e.g., compressor off
while temperature rising).

This descriptor enables the model to
detect both abrupt anomalies and emerging 
patterns such as slow temperature drift or
oscillatory instability.

Based on the deviation descriptor and
the context vector, the severity level of the

event is determined according to formula 
(3):

Where:
— adaptive classification

function;
— resulting severity level

(informational, warning, critical, or
emergency).
Severity is not fixed but adapts over

time according to rolling statistics, operator
feedback and cloud-provided configuration
updates.

After the severity level is determined,
the edge node selects a suitable local
reaction. This decision process is expressed
in formula (4):

Where:
— decision rule mapping a severity

level and event type to an action;
— resulting action executed locally

on the edge node;
event_type — identifier of the

anomaly (temperature deviation, compressor
anomaly, door event, route deviation, etc.).

Possible actions include recording 
detailed logs, generating alerts, triggering 
local alarms, applying safety constraints, or
synchronizing results with cloud services
once connectivity is restored.

To minimize dependency on cloud
stability, the system employs local
buffering, deferred synchronization, and
compact configuration updates. Long-term
analytics, parameter tuning, adaptive
threshold recalculation and rule set updates

Level 3 

Edge Decision and Reaction Decision Logic → Local Action

Level 2: 

Event Interpretation Deviation Analysis → Severity
Classification

Level 1 

Event Formation Sensor Data → Event
Representation → Context
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compressor cycle metadata, ambient 
temperature, and operational flags. 

Using formula (2), the deviation 
descriptor is calculated. Between and : 

 increases from 0.9°C to 2.2°C, 
 shows persistence over 17 

minutes, 
 doubles its slope, 
 (compressor–temperature 

correlation) drops from 0.84 to 0.41. 
Using formula (3), the severity 

classifier assigns the levels: 
Informational → Warning → Critical. 

Using formula (4), the edge decision 
logic selects the appropriate reactions: 

 local alarm, 
 transition to high-power compressor 

mode, 
 buffering diagnostic data locally, 

 notifying the driver through the 
cabin interface. 

Even in the absence of cloud 
connectivity, the edge node autonomously 
mitigates the developing failure and 
prevents spoilage. 

Modelling Results 
To make the behaviour of the 

proposed event processing logic more 
explicit, three representative temperature 
trajectories were modelled and analysed. 
Each trajectory reflects a typical situation in 
cold chain operations and demonstrates how 
the model reacts under different conditions. 
A summary of the key parameters and 
outcomes is presented in Table X. 

Table . Summary of model behaviour 
for three temperature trajectories

Scenario 
Temperature 

pa ern (inside 
chamber) 

Dura on of 
observa on 

Severity evolu on Edge-level reac on 

Stable 
Control 
Curve 

Oscilla�ons 
between −18.4°C 

and −17.6°C around 
setpoint 

20 min Informa�onal only 
Events logged; no alarms; 

no control ac�ons 
triggered 

Slow Dri� 
Curve 

Gradual rise from 
−18.0°C to −15.8°C 

20 min 
Informa�onal → 

Warning → Cri�cal 

Local alarm; compressor 
forced to high-power 

mode; driver alert 

Door-
Abuse 
Curve 

Fast jumps from 
−18.0°C up to 

−12.0°C with short 
cycles 

10–12 min 
Warning → 
Emergency 

High-priority alarm; 
immediate no�ca�on; 
event buffering for later 

cloud analysis 

Across these three trajectories, the 
model consistently distinguished between 
benign fluctuations and genuinely harmful 
deviations, escalated severity in a context-
aware manner, and triggered edge-level 
actions without requiring continuous cloud 
connectivity. 
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EVENT-DRIVEN EDGE PROCESSING MODEL FOR INDUSTRIAL IoT SYSTEMS 
 

Efficient operation of industrial IoT systems requires rapid detection and interpretation 
of parameter deviations, equipment anomalies, and operational disturbances. Conventional 
cloud-centric monitoring architectures introduce latency, dependency on network stability, 
and limited autonomy, which reduce system resilience in time-critical industrial environments. 
This paper presents an event-driven data processing model designed for deployment on edge 
computing nodes in industrial cyber-physical systems. 

The proposed model incorporates a structured event representation, a deviation 
descriptor for quantifying abnormal behaviour, an adaptive severity classification 
mechanism, and a rule-based decision layer for local real-time reactions. The processing 
pipeline transforms raw sensor measurements into contextualized events, evaluates deviation 
dynamics, determines severity levels based on operational context, and selects appropriate 
edge-level actions without reliance on continuous cloud connectivity. 

Modelling results using representative industrial parameter trajectories—including 
stable operating cycles, gradual drift patterns, and abrupt disturbances, demonstrate the 
model’s ability to distinguish normal fluctuations from critical anomalies, escalate severity 
dynamically, and maintain autonomous decision-making under connectivity interruptions. The 
approach improves responsiveness, robustness, and operational reliability of industrial IoT 
monitoring systems. 

Keywords:edge computing, іndustrial IoT, event-driven architecture, anomaly detection, 
contextual processing, real-time decision-making, real-time decision, cyber-physical systems 
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Алькема В.В., Гузій М.М., Зозуля Ю.А. 

ПОДІЄВО-ОРІЄНТОВАНА МОДЕЛЬ ГРАНИЧНОЇ ОБРОБКИ ДАНИХ ДЛЯ 
СИСТЕМ ПРОМИСЛОВОГО ІНТЕРНЕТУ РЕЧЕЙ 

Ефективне функціонування промислових систем Інтернету речей вимагає 
швидкого виявлення та інтерпретації відхилень параметрів, збоїв обладнання та 
операційних подій. Хмарно-орієнтовані архітектури моніторингу створюють 
затримки, залежать від стабільності мережі та обмежують автономність, що 
знижує стійкість у критично важливих промислових сценаріях. У статті 
запропоновано подієво-орієнтовану модель обробки даних, призначену для розгортання 
на edge-вузлах промислових кіберфізичних систем. 

Модель включає структуроване подання подій, дескриптор відхилення для 
кількісної оцінки аномальної поведінки, адаптивний механізм класифікації рівнів 
критичності та правило-орієнтований шар прийняття рішень для локальних дій у 
режимі реального часу. Запропонована логіка перетворює сирі сенсорні дані на 
контекстуалізовані події, аналізує динаміку відхилень, визначає рівні небезпеки 
залежно від контексту та обирає відповідні локальні дії без необхідності постійного 
хмарного зв’язку. 

Моделювання типових промислових сценаріїв — стабільного режиму, повільного 
дрейфу та різких збурень, показало здатність моделі відрізняти нормальні флуктуації 
від критичних аномалій, динамічно підвищувати рівень критичності та забезпечувати 
автономне реагування за відсутності підключення до хмари. Запропонований підхід 
підвищує швидкодію, стійкість і загальну надійність систем промислового IoT. 

Ключові слова: обчислення на периферії; промисловий Інтернет речей; подієво-
орієнтована архітектура; виявлення аномалій; контекстуальна обробка; прийняття 
рішень у реальному часі; рішення в реальному часі; кіберфізичні системи. 


