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Introduction

Efficient management of critical
infrastructure assets is essential for ensuring
operational continuity, minimizing
downtime, and maintaining safety across
energy, transport, manufacturing, and other
industrial ~ sectors.  Even  short-term
deviations in environmental, technological,
or operational parameters may lead to
substantial financial losses, equipment
failures, or increased risks to personnel and
consumers. Traditional [oT-based
monitoring systems provide real-time
telemetry but remain heavily dependent on
cloud connectivity. This dependency
introduces several limitations: latency,
unstable communication channels, limited
on-site autonomy, and insufficient reaction
speed in time-critical scenarios.

Recent studies show that shifting data
processing to the edge layer significantly
improves system responsiveness, resilience,
and adaptability. Edge nodes are capable of
performing real-time filtering, anomaly
detection, event classification, and local
decision-making directly at the point where
industrial data is generated. However,
existing IloT platforms for monitoring
critical infrastructure still predominantly
rely on static rule-based logic or cloud-
centric processing. As a result, they lack
context  awareness, dynamic  event
prioritization, and the ability to operate
autonomously during connectivity
disruptions.

These challenges highlight the need
for an intelligent, event-driven edge
computing  architecture  capable  of
interpreting contextual information,
classifying industrial events by their
criticality, and executing on-site decisions in
real time. Such an approach enhances the
resilience of critical infrastructure, reduces
operational delays, and forms a more
accurate, robust, and autonomous
monitoring ecosystem for the industrial
Internet of Things.

Problem Statement

The aim of this research is to develop
an event-driven data processing logic
within an  edge-oriented architecture
designed for intelligent cold chain logistics
management. To achieve this aim, the
following objectives are defined:

1. Analyze the operational chara-
cteristics of cold chain logistics and
identify the types of critical events that
influence product quality and safety.

2. Investigate modern IoT and edge
computing architectural approaches,
revealing their limitations in terms of
latency, = autonomy,  scalability, and
adaptability under real operating conditions.

3. Develop a model of event
processing logic that provides:

— contextual interpretation of parameter
deviations;

— dynamic classification of events based
on their severity;

— local decision-making at the edge node;
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— minimized dependency on cloud service
stability.

Event Processing Logic Model for
Intelligent Cold Chain Management

The event processing logic operates
directly on the edge node, where sensor
measurements are received continuously. To
ensure structured interpretation, each event
is represented as a four-component tuple
shown in formula (1):

E =(t,s,v,C)(1)

Where:

t— timestamp of the measurement;

s— sensor or source identifier;

v— observed value (temperature,
humidity, vibration, door state, etc.);
C— context vector containing

operational metadata relevant to the event.

The context vector Cprovides
additional semantics: current operating
mode (loading, steady-state, defrost), recent
measurement history, refrigeration cycle
state, ambient temperature, and operational
flags such as door status or scheduled
activity windows. This allows the system to
interpret the same numerical deviation
differently  depending on operational
circumstances.

To quantify how strongly an event
deviates from expected behaviour, the
system computes a deviation descriptor,
defined in formula (2):

D(E) = <5mag' 6dur' 6trend' 6corr>(2)

Where:

Omag— magnitude of the deviation
relative to the contextual baseline;

Squ—  duration for which the
deviation persists;

Sreng— direction and rate of change
(increasing, decreasing, oscillatory);

Scor—  correlation  with  other
parameters or events (e.g., compressor off
while temperature rising).

This descriptor enables the model to
detect both abrupt anomalies and emerging
patterns such as slow temperature drift or
oscillatory instability.

Based on the deviation descriptor and
the context vector, the severity level of the

event is determined according to formula

3):
L= fclass(D(E)v C)(S)

Where:

felass— adaptive classification
function,;

L—  resulting severity level
(informational, warning, critical, or
emergency).

Severity is not fixed but adapts over
time according to rolling statistics, operator
feedback and cloud-provided configuration
updates.

After the severity level is determined,
the edge node selects a suitable local
reaction. This decision process is expressed
in formula (4):

A = R(L,event_type, C)(4)

Where:

R— decision rule mapping a severity
level and event type to an action;

A— resulting action executed locally
on the edge node;

event type — identifier of the
anomaly (temperature deviation, compressor
anomaly, door event, route deviation, etc.).

Level 1

Sensor Data - Event
Representation - Context

Event Formation

Level 2:

Deviation Analysis - Severity

Event Interpretation P A
P Classification

Level 3

Edge Decision and Reaction Decision Logic - Local Action

Possible actions include recording
detailed logs, generating alerts, triggering
local alarms, applying safety constraints, or
synchronizing results with cloud services
once connectivity is restored.

To minimize dependency on cloud
stability, the system employs local
buffering, deferred synchronization, and
compact configuration updates. Long-term
analytics, parameter tuning, adaptive
threshold recalculation and rule set updates
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are performed in the cloud and transmitted  such as progressive compressor
back to the edge node as lightweight underperformance or weak  sensor
profiles, ensuring continuous operation  correlation.

regardless of connectivity. All  event  tuples, deviation

Figure. Hierarchical organization of
the event processing logic.

The structured representation in Fig.
X illustrates how the proposed event
processing logic is organized into three
hierarchical levels, showing the sequential
transformation of raw sensor inputs into
enriched events, analytical interpretations,
and finally edge-level decisions. This
layered view clarifies the internal
workflow of the model and highlights the
functional role of each stage within the
overall event processing pipeline.

In summary, formulas (1)—+(4)
collectively define the proposed event
processing logic model, which formalizes
how raw sensor readings are transformed
into contextualized events, how deviations
are quantified, how severity levels are
dynamically = determined, and  how
appropriate edge-level actions are selected.
This formal structure constitutes the core of
the model and distinguishes it from
conventional threshold-based approaches.

lllustrative Scenario and
Modelling Results for Cold Chain
Event Processing

This section provides a concise
scenario demonstrating how the proposed
event processing logic operates under
realistic cold-chain transportation
conditions. The example illustrates the
transformation of raw sensor readings into
contextualized events, deviation descriptors,
severity levels, and ultimately edge-level
actions.

Modelling Tools and Methods

The modelling process used a
combination of historical cold-chain
telemetry and synthetic perturbations.
Historical datasets from refrigerated
vehicles  provided realistic thermal
dynamics, noise characteristics, and
compressor behavior. Synthetic time-
series components were generated to
emulate rare or developing failure modes

descriptors, and severity classifications
were computed using Python-based scripts
(NumPy, Pandas, SciPy). Temperature
trajectories  were  reproduced  using
controlled perturbations to baseline data,
preserving thermal inertia and ambient
influence. Visual inspection and statistical
evaluation of the trajectories were
performed using Matplotlib and standard
signal-processing utilities. This
combination ensured realistic
representation of cold-chain operational
conditions while enabling controlled
evaluation of the event processing logic.

Scenario Description

To illustrate the practical application
of the proposed model, consider a
refrigerated vehicle transporting frozen
goods (—18°C setpoint) along a 120 km
route. The edge node inside the vehicle
continuously collects temperature,
compressor activity, ambient conditions, and
door status readings.

At time t,, the system operates within
normal limits:internal temperature —18.3°C,
compressor on, door closed, ambient +4°C.

At time t,, a small upward drift
begins. The temperature increases to
—17.6°C while the compressor continues
cycling normally. A threshold-based system
would not classify this as abnormal.

At time t;, the drift accelerates:
temperature —16.7°C, compressor cycles
become irregular, and the correlation
between compressor state and temperature
response decreases.

At time t,, the temperature reaches
—15.8°C while compressor output becomes
insufficient. Despite being within acceptable
regulatory limits, the deviation pattern
indicates an emergent equipment
malfunction.

Using formula (1), each reading is
represented as an event
where Cincludes the thermal history,
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compressor cycle metadata, ambient
temperature, and operational flags.
Using formula (2), the deviation

descriptor is calculated. Between t;and t,:
—Omagincreases from 0.9°C to 2.2°C,

—8qurshows  persistence  over 17
minutes,

—8yengdoubles its slope,

—dcorr(cOmpressor—temperature
correlation) drops from 0.84 to 0.41.

Using formula (3), the severity
classifier assigns the levels:
Informational — Warning — Ceritical.

Using formula (4), the edge decision
logic selects the appropriate reactions:

—local alarm,

—transition to high-power compressor
mode,

—buffering diagnostic data locally,

—notifying the driver through the
cabin interface.

Even in the absence of cloud
connectivity, the edge node autonomously

mitigates the developing failure and
prevents spoilage.

Modelling Results

To make the behaviour of the

proposed event processing logic more
explicit, three representative temperature
trajectories were modelled and analysed.
Each trajectory reflects a typical situation in
cold chain operations and demonstrates how
the model reacts under different conditions.
A summary of the key parameters and
outcomes is presented in Table X.

Table . Summary of model behaviour
for three temperature trajectories

Temperature .
] L. Duration of ) ] .
Scenario pattern (inside ) Severity evolution Edge-level reaction
observation
chamber)
Oscillations
Stable . Events logged; no alarms;
between -18.4°C . . .
Control . 20 min Informational only no control actions
and -17.6°C around )
Curve . triggered
setpoint
Local alarm; compressor
Slow Drift | Gradual rise from 20 min Informational - forced to high power
Curve | -18.0°Cto-15.8°C Warning - Critical '8n-p
mode; driver alert
Door Fast jumps from High-priority alarm;
-18.0°Cup to i Warning = immediate notification;
Abuse o 10-12 min )
Curve -12.0°C with short Emergency event buffering for later
cycles cloud analysis
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Alkema V.V., Huzii M.M., Zozulya Y.A.
EVENT-DRIVEN EDGE PROCESSING MODEL FOR INDUSTRIAL IoT SYSTEMS

Efficient operation of industrial loT systems requires rapid detection and interpretation
of parameter deviations, equipment anomalies, and operational disturbances. Conventional
cloud-centric monitoring architectures introduce latency, dependency on network stability,
and limited autonomy, which reduce system resilience in time-critical industrial environments.
This paper presents an event-driven data processing model designed for deployment on edge
computing nodes in industrial cyber-physical systems.

The proposed model incorporates a structured event representation, a deviation
descriptor for quantifying abnormal behaviour, an adaptive severity classification
mechanism, and a rule-based decision layer for local real-time reactions. The processing
pipeline transforms raw sensor measurements into contextualized events, evaluates deviation
dynamics, determines severity levels based on operational context, and selects appropriate
edge-level actions without reliance on continuous cloud connectivity.

Modelling results using representative industrial parameter trajectories—including
stable operating cycles, gradual drift patterns, and abrupt disturbances, demonstrate the
model’s ability to distinguish normal fluctuations from critical anomalies, escalate severity
dynamically, and maintain autonomous decision-making under connectivity interruptions. The
approach improves responsiveness, robustness, and operational reliability of industrial IoT
monitoring systems.

Keywords:edge computing, industrial IoT, event-driven architecture, anomaly detection,
contextual processing, real-time decision-making, real-time decision, cyber-physical systems



10 IIpobnemu inpopmamuzayii ma ynpaeninmus, 3(83) 2025

Anbkema B.B., I'y3iii M.M., 303yas FO.A.

MNOJAIEBO-OPIEHTOBAHA MOJIEJIb I'PAHUYHOI OBPOBKU JAHUX IS
CHUCTEM NPOMMCJIOBOI'O IHTEPHETY PEUEM

Edexmusne ¢ynxyionysanns npomucnosux cucmem Inmepunemy peueti sumazae
WBUOKO20 BUABILEHHA MA [HmMepnpemayii 6iOXuieHb napamempie, 300i6 001AOHAHHA MA
onepayiunux nooiu. XMapHO-OpPIEHMOBAHI — APXIMEKMYPU MOHIMOPUH2Y — CMBOPIOIONMDb
3ampumMKU, 3anexcams 8i0 CmadiIbHOCMI Mepexci ma 06MexCyioms A8MOHOMHICMb, WO
SHUJICYE  CMIUKICMb V  KPUMUYHO  BAJMCAUBUX HPOMUCIOBUX cyeHapisax. Y cmammi
3anponoHo8ano Nodic80-Opi€HMOBAHY MOOeNb 0OPOOKU OAHUX, NPUSHAYEH) O PO32OPMAHHSL
Ha edge-8y3nax npomuciosux Kibepghizuunux cucmenm.

Mooenv  sxarouae cmpykmyposawe HOOAHHS NOOIl, O0ecKpunmop 6iOXuieHHs O
KIMbKICHOT OYIHKU AHOMANbHOI NOBeOdiHKU, a0anmueHUuli Mexauizm Kiacughikayii pieHise
KPUMUYHOCMI ma npasuilo-opicHMOBAHUN wap APULHAMMSA piuleHb 015 JTOKATbHUX Oill Y
PedCcUMI  peanbHO20 Yacy. 3anponoHoéaHa 102iKka Nnepemeoproe Cupi CeHCOpHi Oaui Ha
KOHMEKCmyanizoeani noodii, aumanizye OuHAMIKY GIOXUEeHb, BU3HAYAE pIBHI Hebe3neKu
3an1eHCHO 8I0 KOHMeKCmy ma ooupae 8i0nosioni 1oKanbHi 0ii 6e3 HeoOXiOoHocmi NOCMIUHO20
XMAPHO20 38 'SI3KY.

Mooenosanns munogux NPoOMUCIIOBUX CYEHapiie — CMAOLIbHO20 PerHcUMY, NOBLILHO2O0
Opeltighy ma pizkux 30ypers, NOKA3aL0 30amMHICMb MOOel GIOPI3HAMU HOPMAbHI (QAyKmyayii
8I0 KPUMUYHUX AHOMATIU, OUHAMIYHO NIOBUUYBAMU PIGeHb KpUMUYHOCII ma 3a0e3neyyeamu
ABMOHOMHE pedazy8aHHs 3a GIOCYMHOCMI NIOKIIOYEHH 00 XMapu. 3anponoHo8anutl nioxio
RIOBUYYE WBUOKOOII0, CIMIUIKICMb [ 3a2abHY HAJIIHICMYb cucmem npomuciogozo 1oT.

Kniouosi cnosa: oouucnenns na nepugpepii; npomucnosuii Inmeprnem peueil, nooicgo-
OpieHmosana apximexmypa, UAGIEHHs AHOMAIL, KOHMEKCMYydalbHa 00poOKa, NpUHAMMSL
piuens y peaibHOMY YAci; pilleHHsl 8 PealbHOMY Yaci;, Kibepizuuni cucmemu.



