Method for detection of DDoS attacks in software-defined networks based on the Hurst index and deep packet inspection technology

Authors

DOI:

https://doi.org/10.18372/2073-4751.83.20507

Keywords:

software-defined networks, DDoS, Hurst index, DPI, QoS, fault tolerance

Abstract

The article considers the problem of timely detection of DDoS attacks in software-defined networks (SDN), where the centralized controller architecture creates a critical point of failure in conditions of increasing traffic volumes. A combined detection method is proposed, which combines behavioral analysis of traffic using the Hurst index with selective deep packet inspection (DPI). The approach involves dynamic detection of anomalies based on a decrease in the traffic self-similarity index and further refinement of the attack type using signature analysis. The method is integrated into the SDN control plane using CBQ and WRED mechanisms for adaptive queue management. Experimental studies in the Mininet + Floodlight environment confirmed that the combined Hurst–DPI approach provides an increase in attack detection accuracy up to 94%, a reduction in response time by 35%, and a reduction in false positives by 67% compared to traditional methods. The proposed algorithm allows to increase the fault tolerance of SDN networks and maintain the quality of service of critical services in the event of DDoS load.

References

McKeown N., Anderson T., Balakrishnan H. et al. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review. 2008. 38(2): 69–74. DOI: 10.1145/1355734.1355746.

Kreutz D., Ramos F., Verissimo P. et al. Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE. 2015. 103(1): 14–76. DOI: 10.1109/JPROC.2014.2371999.

Mirkovic J., Reiher P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer Communication Review. 2004. 34(2): 39–53. DOI: 10.1145/997150.997156.

Peng T., Leckie C., Ramamohanarao K. Survey of network-based defense mechanisms countering the DoS and DDoS problems. ACM Computing Surveys. 2007. 39(1): 3. DOI: 10.1145/1216370.1216373.

Zargar S. T., Joshi J., Tipper D. A survey of defense mechanisms against DDoS flooding attacks. IEEE Communications Surveys & Tutorials. 2013. 15(4): 2046–2069. DOI: 10.1109/SURV.2013.031413.00127.

Kandoi R., Antikainen M. Denial-of-Service Attacks in OpenFlow SDN Networks. Proc. of IEEE Integrated Network Management (IM) – DISSECT Workshops. 2015. pp. 1322–1326. DOI: 10.1109/INM.2015.7140489.

Bawany N. Z., Shamsi J. A., Salah K. DDoS Attack Detection and Mitigation Using SDN: Methods, Practices, and Solutions. Arabian Journal for Science and Engineering. 2017. 42(2): 425–441. DOI: 10.1007/s13369-017-2414-5.

Singh J., Behal S. Detection and mitigation of DDoS attacks in SDN: a comprehensive review. Computer Science Review, 2020, 37: 100279. DOI: 10.1016/j.cosrev.2020.100279.

Wabi A. A., Idris I., Olaniyi O. M. et al. DDOS attack detection in SDN: Method of attacks, detection techniques, challenges and research gaps. Computers & Security, 2024, 139: 103652. DOI: 10.1016/j.cose.2023.103652.

Finsterbusch M., Richter C., Rocha E., Müller J.-A., Hanssgen K. A survey of payload-based traffic classification approaches. IEEE Communications Surveys & Tutorials, 2014, 16(2): 1135–1156. DOI: 10.1109/SURV.2013.100613.00161.

Velan P., Čermák M., Čeleda P., Drašar M. A survey of methods for encrypted traffic classification and analysis. International Journal of Network Management, 2015, 25(5): 355–374. DOI: 10.1002/nem.1901.

Leland W. E., Taqqu M. S., Willinger W., Wilson D. V. On the Self-Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking, 1994, 2(1): 1–15. DOI: 10.1109/90.282603.

Li M. An approach to reliably identifying signs of DDoS flood attacks based on LRD traffic pattern recognition. Computers & Security, 2004, 23(7): 549–558. DOI: 10.1016/j.cose.2004.10.005.

Hoque N., Bhattacharyya D. K., Kalita J. K. FFSc: A novel measure for low-rate and high-rate DDoS attack detection using multivariate data analysis. Security and Communication Networks, 2016, 9(22): 2032–2041. DOI: 10.1109/COMSNETS.2016.7439939.

Kaur G., Saxena V., Gupta J. P. Detection of TCP targeted high bandwidth attacks using self-similarity. Journal of King Saud University – Computer and Information Sciences, 2017, 29(2): 269–280. DOI: 10.1016/j.jksuci.2017.05.004.

Ling Y., Yang C., Li X., Tang F. Real-time Detection of DDoS Attacks Based on Hurst Index. Proc. of 2nd Int. Conf. on Networking and Systems of AI (INSAI), Shanghai, 2022, pp. 42–45. DOI: 10.1109/INSAI56792.2022.00018.

Aladaileh M. A., Anbar M., Hintaw A. J. et al. Rényi Joint Entropy-Based Dynamic Threshold Approach to Detect DDoS Attacks against SDN Controller with Various Traffic Rates. Applied Sciences, 2022, 12(12): 6127. DOI: 10.3390/app12126127.

Feinstein L., Schnackenberg D., Balupari R., Kindred D. Statistical approaches to DDoS attack detection and response. Proc. of DARPA Information Survivability Conference and Exposition (DISCEX III), 2003, 1: 303–314. DOI: 10.1109/DISCEX.2003.1194894.

Giotis K., Argyropoulos C., Androulidakis G., Kalogeras D., Maglaris V. Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments. Computer Networks, 2014, 62: 122–136. DOI: 10.1016/j.comnet.2013.10.014.

Altamemi A. A., Jassim S. A., Al-Janabi S. DDoS attack detection in software defined networking controller using machine learning techniques. Bulletin of Electrical Engineering and Informatics, 2022, 11(5): 2836–2843. DOI: 10.11591/eei.v11i5.4155.

Fouladi F., Rad A. A., Varathan K. D., Jelodar H. A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder neural network for SDN. Computer Networks, 2022, 214: 109140. DOI: 10.1016/j.comnet.2022.109140.

Mehmood S., Amin R., Mustafa J. et al. Distributed Denial of Services (DDoS) attack detection in SDN using optimizer-equipped CNN-MLP. PLOS ONE, 2025, 20(1): e0312425. DOI: 10.1371/journal.pone.0312425.

Kulakov Y., Obozniy D. DPI traffic classification technologies in SDN networks: a survey. Проблеми інформатизації та управління, 2021, 74: 49–54. DOI: 10.18372/2073-4751.74.17881

Kulakov Y., Obozniy D. Algorithm for orchestration of encrypted traffic in SDN networks. Проблеми інформатизації та управління, 2025, 81: 52–58. DOI: 10.18372/2073-4751.81.20129

Published

2025-12-19

Issue

Section

Статті