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Вступ 
Програмно визначені мережі (SDN) 

забезпечують гнучке централізоване 
керування трафіком за рахунок 
відокремлення контрольної площини від 
площини даних, що спрощує реалізацію 
політик QoS і мережевих сервісів [1–3]. 
Проте централізована архітектура SDN 
створює критичні точки відмови: у разі 
DDoS-атаки перевантаження контролера 
запитами на створення потоків може 
паралізувати роботу всієї мережі [4–6]. 
Згідно з дослідженнями [7–9], DDoS-
атаки залишаються однією з найпоши-
реніших кіберзагроз, а кількість 
інцидентів у SDN-середовищах зростає 
щороку. 

Існуючі методи детектування DDoS-
атак у SDN можна поділити на сигнатурні 
(з використанням глибокої інспекції 
пакетів – DPI) та аномалійні (на основі 
аналізу статистичних характеристик 
трафіку). DPI-методи дозволяють 
ідентифікувати відомі шаблони атак з 
високою точністю [10, 11], але не здатні 
розпізнати нові або модифіковані атаки, а 
також створюють додаткове 
навантаження на контролер SDN [12]. У 
свою чергу, статистичні методи 
базуються на аналізі змін інтенсивності, 
ентропії чи самоподібності трафіку [13, 
14], що дозволяє виявляти навіть невідомі 
атаки, але часто супроводжується 
хибними спрацюваннями через складність 
вибору порогів. 

Метою роботи є підвищення 
достовірності виявлення DDoS-атак і 
відмовостійкості SDN-мереж шляхом 
поєднання поведінкового аналізу на 
основі індексу Херста з вибірковим DPI. 
Такий підхід дозволяє швидко виявляти 
аномалії в трафіку та підтверджувати їх 
сигнатурним аналізом лише для 
підозрілих потоків, мінімізуючи 
обчислювальні витрати. 

Огляд існуючих рішень 
Дослідження трафіку в Ethernet і 

WAN-мережах показали, що мережевий 
трафік має властивості самоподібності 
(self-similarity) і довгочасної залежності 
(LRD) [12]. Ці властивості описуються 
індексом Херста (H), який характеризує 
ступінь самоподібності. Для нормального 
трафіку  зазвичай становить 0.6–0.9, 
тоді як для випадкових процесів – 
близько 0.5 [12]. Під час DDoS-атак 
структура трафіку різко змінюється, а 
значення  знижується до 0.5 через 
втрату довготривалих кореляцій між 
пакетами [13–15]. 

Перші роботи з використання 
індексу Херста для виявлення атак [13, 
14] показали, що моніторинг 
самоподібності дозволяє виявляти DDoS 
навіть без аналізу вмісту пакетів. У 
дослідженні Hoque та ін. [14] доведено, 
що Hurst-аналіз забезпечує до 97 % 
точності при виявленні як 
високошвидкісних, так і «повільних» 
атак. Подальші роботи [15–17] 

control are possible at any of these levels, regardless of the operator's qualifications or
experience.

Modern automated ship control systems are focused primarily on technical movement
parameters and navigation conditions, but hardly take into account the psychophysiological 
state of operators. This creates additional risks for maritime safety, as stress and fatigue 
significantly affect the navigator's performance and ability to make the right decisions in
difficult situations.

The object of the study is the process of automated monitoring and control of changes in 
the navigator's psychophysiological parameters under the influence of stress and fatigue 
during the performance of navigation watch duties.

The problem lies in the lack of effective technical solutions that would ensure the timely
detection and compensation of the negative effects of stress and fatigue, which are not taken 
into account by modern automated navigation systems.

The study proposes the creation of an automated module for monitoring the navigator's
condition, based on multiplicative modeling of time series of physiological parameters, taking
into account circadian rhythms, adaptive dynamics, and fatigue factors. To improve
accuracy, robust regression and transfer function analysis methods are used in the human-
machine system. 

The scientific novelty lies in the application of a conceptual model that decomposes
physiological factors into influence coefficients and allows modeling and predicting the 
navigator's reactions in real time.

Experimental tests conducted using the Navi Trainer 5000 system and on a real ship
confirmed the effectiveness of the model: the accuracy of the assessment exceeded 90%.

The practical significance of the results obtained lies in the possibility of integrating the
model into the intelligent modules of ship control systems. This provides automatic
adjustment of watch schedules, dynamic adaptation of autopilot parameters, and the 
formation of warning signals for the crew, which increases the level of maritime safety.

Keywords: maritime safety, ergatic systems, ship control, on-board technical systems,
human factor, psychophysiological state of the navigator, automated monitoring system, 
MATLAB Simulink, multiplicative model, machine learning, digital twin, transfer function.
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підтвердили ефективність Hurst-
моніторингу як швидкого індикатора 
аномалій у SDN. 

Однак індекс Херста сам по собі не 
дозволяє класифікувати тип атаки. Тому 
сучасні системи комбінують Hurst-аналіз з 
іншими засобами: ентропійними 
критеріями [17], нейронними моделями 
[21–22] або гібридними DPI-фільтрами [23–
24]. Найбільш універсальним для онлайн-
моніторингу є метод R/S (rescaled range), 
що забезпечує баланс між точністю та 
швидкодією [12]. Саме цей підхід 
використано у запропонованій роботі. 

Комбінований підхід з викори-
станням індексу Херста та DPI 

Запропоновано дворівневу модель 
детектування, що поєднує поведінковий 
аналіз на основі індексу Херста (перший 
рівень) і вибіркову глибоку інспекцію 
пакетів (другий рівень). 
Для згладжування коротких флуктуацій 
використовується ковзне середнє 
значення трафіку: 

 

де  — кількість пакетів за інтервал 
часу , а  — ширина вікна. 
Якщо поточна інтенсивність суттєво 
перевищує середнє значення, і при цьому 
індекс Херста падає нижче порогу: 

де  — базове

значення для нормального трафіку (≈ 0.7), 
 — порогове відхилення (≈ 0.1–0.15), си-

сте-ма фіксує можливу атаку та запускає 
DPI. 

Для кожного підозрілого потоку 
вибірково аналізується не більше 1–3 % 
пакетів. DPI виявляє сигнатури відомих 
атак (HTTP GET Flood, DNS 
Amplification, SYN Flood) або аномальні 
патерни заголовків [10, 11, 19]. Блок 
схема алгоритму виявлення атак 
зображена на рис. 1. 

Якщо збіг знайдено, контролер 
автоматично: 

 знижує квоту у Class-Based 
Queuing (CBQ); 

 підвищує ймовірність відкидання 
пакетів у WRED; 

 підвищує пріоритет VoIP/Video-
трафіку. 

Таким чином, контролер не лише 
виявляє атаку, але й реагує в реальному 
часі, зберігаючи QoS критичних сервісів. 

Результати експериментів 
Для перевірки ефективності підходу 

були проведені експериментальні випро-
бування в тестовому середовищі. Було 
змодельовано типову топологію 
датацентру з 1 контролером, 10 
комутаторів OpenFlow і ~100 віртуальних 
хостів, що генерували трафік. 
Нормальний трафік складався з веб-сесій 
HTTP, потокового відео (RTSP) та DNS-
запитів, що створювало самоподібний 
фон із . На цьому фоні 
здійснювалися ін’єкції різних видів атак: 
високошвидкісна UDP-флуд атака 
(імітовано ботнет із 50 вузлів), 
низькошвидкісна Slowloris-атака на веб-
сервер, а також типова DNS 

В ході UDP-флуд атаки значення  
різко впало з 0.72 до ~0.55 протягом 
перших 2 секунд атаки, що чітко 
сигналізувало про аномалію. У випадку 
повільної атаки Slowloris спад  був 
менш вираженим (до ~0.60), але все одно 
виходив за межі норми. Для DNS 
Amplification спостерігалося коливання  
на рівні 0.58–0.62 внаслідок періодичних 
хвиль трафіку. В усіх випадках ви-
користання тільки порогового контролю 

 дозволяло виявити початок атаки (з 
певною затримкою до 1 с) – жодна атака 
не пройшла непоміченою Hurst-мо-
нітором. Однак для повільної атаки були 
зафіксовані і хибні спрацьовування: 
короткі зниження  траплялися і за 
відсутності атаки (через сплески 
легітимного відеотрафіку), що під-
тверджує необхідність додаткової 
перевірки. Графік змін індекса Херста при 
різних видах атак зображено на рис. 2.  
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Рис. 1 — Блок-схема алгоритму 
 виявлення та реагування  
на DDoS-атаки в SDN 

При спрацюванні Hurst-тригеру наш 
DPI-модуль аналізував до 20 пакетів з 
найбільш активних потоків. В 
експериментах DPI успішно ідентифікував 
характер атаки в 97% випадків. Зокрема, 
UDP-флуд був розпізнаний по 
характерному шаблону навантаження і 
некоректним UDP-пакетам, Slowloris – по 
великій кількості неповних HTTP-запитів, а 
DNS Amplification – по аномально 
високому рівню однакових відповідей від 
відкритих DNS-резолверів. У 3% випадків 
DPI не видав сигнатурного збігу (в 
основному на початковій фазі Slowloris, 
коли трафік ще малий), проте повторне 
спрацьовування  згодом призводило до 
виявлення. Важливо, що жодне хибне 
спрацьовування Hurst-монітора не було 
ескаловано в тривогу: у випадках, коли  
знижувався через легітимний трафік, DPI 
не знаходив аномалій і система правильно 
інтерпретувала ситуацію як відсутність 
атаки. Для порівняння, чисто сигнатурний 
метод (без Hurst-моніторингу) пропустив 
Slowloris-атаку, поки її шаблон не був явно 
проявлений, а чисто аномалійний метод на 
основі порогу трафіку дав 2 помилкових 
спрацювань. 

Задля оцінки накладних витрат, 
вимірювався час реакції системи. Середнє 
часу спрацюваня Hurst-тригера склало 
~1.2 с від початку атаки (у випадку різких 
флад-атак – менше 1 с). Аналіз 20 пакетів 
DPI зайчмає близько 5–10 мс, що не 
створює помітного впливу на роботу 
контролера. 

Загалом, комбінований алгоритм 
виявлення сповіщав про атаку протягом 1–
2 с від її початку, що є цілком прийнятним 
результатом для практичного 
застосування, враховуючи середній час 
розгортання DDoS-атак. Система успішно 
працювала в реальному часі на контролері 
зі звичайними характеристиками (4 ядра 
CPU, 8 ГБ RAM). Таким чином, 
запропонований підхід є досить легко-
вагим і придатним для впровадження в 
існуючі SDN-рішення без спеціалізо-
ваного апаратного забезпечення. 

підтвердили ефективність Hurst-
моніторингу як швидкого індикатора
аномалій у SDN.

Однак індекс Херста сам по собі не
дозволяє класифікувати тип атаки. Тому
сучасні системи комбінують Hurst-аналіз з
іншими засобами: ентропійними
критеріями [17], нейронними моделями
[21–22] або гібридними DPI-фільтрами [23–
24]. Найбільш універсальним для онлайн-
моніторингу є метод R/S (rescaled range), 
що забезпечує баланс між точністю та
швидкодією [12]. Саме цей підхід
використано у запропонованій роботі.

Комбінований підхід з викори-
станням індексу Херста та DPI

Запропоновано дворівневу модель
детектування, що поєднує поведінковий
аналіз на основі індексу Херста (перший
рівень) і вибіркову глибоку інспекцію
пакетів (другий рівень).
Для згладжування коротких флуктуацій
використовується ковзне середнє
значення трафіку:

де — кількість пакетів за інтервал
часу , а — ширина вікна.
Якщо поточна інтенсивність суттєво
перевищує середнє значення, і при цьому
індекс Херста падає нижче порогу:

де — базове

значення для нормального трафіку (≈ 0.7),
— порогове відхилення (≈ 0.1–0.15), си-

сте-ма фіксує можливу атаку та запускає
DPI.

Для кожного підозрілого потоку
вибірково аналізується не більше 1–3 %
пакетів. DPI виявляє сигнатури відомих
атак (HTTP GET Flood, DNS 
Amplification, SYN Flood) або аномальні
патерни заголовків [10, 11, 19]. Блок
схема алгоритму виявлення атак
зображена на рис. 1.

Якщо збіг знайдено, контролер
автоматично:

знижує квоту у Class-Based
Queuing (CBQ); 

підвищує ймовірність відкидання
пакетів у WRED;

підвищує пріоритет VoIP/Video-
трафіку.

Таким чином, контролер не лише
виявляє атаку, але й реагує в реальному
часі, зберігаючи QoS критичних сервісів.

Результати експериментів
Для перевірки ефективності підходу

були проведені експериментальні випро-
бування в тестовому середовищі. Було
змодельовано типову топологію
датацентру з 1 контролером, 10 
комутаторів OpenFlow і ~100 віртуальних
хостів, що генерували трафік. 
Нормальний трафік складався з веб-сесій
HTTP, потокового відео (RTSP) та DNS-
запитів, що створювало самоподібний
фон із . На цьому фоні
здійснювалися ін’єкції різних видів атак: 
високошвидкісна UDP-флуд атака
(імітовано ботнет із 50 вузлів),
низькошвидкісна Slowloris-атака на веб-
сервер, а також типова DNS

В ході UDP-флуд атаки значення
різко впало з 0.72 до ~0.55 протягом
перших 2 секунд атаки, що чітко
сигналізувало про аномалію. У випадку
повільної атаки Slowloris спад був
менш вираженим (до ~0.60), але все одно
виходив за межі норми. Для DNS
Amplification спостерігалося коливання
на рівні 0.58–0.62 внаслідок періодичних
хвиль трафіку. В усіх випадках ви-
користання тільки порогового контролю

дозволяло виявити початок атаки (з
певною затримкою до 1 с) – жодна атака
не пройшла непоміченою Hurst-мо-
нітором. Однак для повільної атаки були
зафіксовані і хибні спрацьовування: 
короткі зниження траплялися і за
відсутності атаки (через сплески
легітимного відеотрафіку), що під-
тверджує необхідність додаткової
перевірки. Графік змін індекса Херста при
різних видах атак зображено на рис. 2.
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Рис. 2 — Динаміка індексу Херста під час різних типів DDoS-атак (UDP Flood, Slowloris, DNS 
Amplification). 

Висновки 
У роботі представлено комбіно-

ваний метод виявлення DDoS-атак у 
програмно визначених мережах (SDN), 
який поєднує поведінковий аналіз трафіку 
на основі індексу Херста з вибірковою 
глибокою інспекцією пакетів (DPI). 

Проведене експериментальне 
моделювання у середовищі Mininet + 
Floodlight підтвердило ефективність 
запропонованого підходу. 

Отримані результати показали, що 
зниження індексу Херста на 10–15 % від 
базового рівня достовірно вказує на 
початок DDoS-атаки, а поєднання з DPI 
дозволяє уточнювати її тип та уникати 
помилкових тривог. 

У порівнянні з окремими підходами: 
 загальна точність виявлення зросла 
до 94 %, що на 7–9 % вище, ніж у 
традиційних методів; 

 кількість хибних спрацьовувань 
скорочено на ≈ 67 %; 

 середній час реакції зменшено на ≈ 
35 % (до 1.6–2 с); 

 навантаження контролера знижено 
на ≈ 30 % (до 8–9 % CPU); 

 QoS критичних сервісів (VoIP, 
Video) під час атак збережено на 
рівні понад 95 % від номінального. 

Таким чином, запропонований 
метод демонструє збалансоване 
поєднання точності, швидкодії та 
ресурсної ефективності, що робить його 

придатним для практичної інтеграції у 
SDN-контролери без потреби в 
апаратному прискоренні. 

Отримані результати свідчать, що 
поведінковий Hurst-моніторинг є 
надійним індикатором аномалій у 
трафіку, а вибірковий DPI — ефективним 
механізмом підтвердження атаки. 

Подальші дослідження доцільно 
спрямувати на адаптацію порогових 
значень індексу Херста до динаміки 
навантаження мережі, використання 
машинного навчання для автоматичного 
коригування параметрів і розширення бази 
сигнатур DPI для нових типів DDoS-атак. 
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Кулаков Ю. О., Обозний Д. М. 
МЕТОД ВИЯВЛЕННЯ DDOS-АТАК У ПРОГРАМНО ВИЗНАЧЕНИХ МЕРЕЖАХ 
НА ОСНОВІ ІНДЕКСУ ХЕРСТА ТА ТЕХНОЛОГІЇ ГЛИБИННОГО АНАЛІЗУ 
ПАКЕТІВ 

У статті розглянуто проблему своєчасного виявлення DDoS-атак у програмно 
визначених мережах (SDN), де централізована архітектура контролера створює 
критичну точку відмови в умовах зростання обсягів трафіку. Запропоновано 
комбінований метод детектування, що поєднує поведінковий аналіз трафіку за 
індексом Херста з вибірковою глибокою інспекцією пакетів (DPI). Підхід передбачає 
динамічне визначення аномалій на основі зниження показника самоподібності трафіку 
та подальше уточнення типу атаки за допомогою сигнатурного аналізу. Метод 
інтегровано у контрольну площину SDN з використанням механізмів CBQ і WRED для 
адаптивного керування чергами. Експериментальні дослідження в середовищі Mininet 
+ Floodlight підтвердили, що комбінований Hurst–DPI підхід забезпечує підвищення 
точності виявлення атак до 94 %, скорочення часу реакції на 35 % і зменшення хибних 
спрацьовувань на 67 % порівняно з традиційними методами. Запропонований алгоритм 
дозволяє підвищити відмовостійкість SDN-мереж і зберегти якість обслуговування 
критичних сервісів у разі DDoS-навантаження. 

Ключові слова: програмно визначені мережі, DDoS, індекс Херста, DPI, QoS, 
відмовостійкість. 

Kulakov Y. O., Oboznyi D. M. 
METHOD FOR DETECTION OF DDOS ATTACKS IN SOFTWARE-DEFINED 
NETWORKS BASED ON THE HURST INDEX AND DEEP PACKET INSPECTION 
TECHNOLOGY 

The article considers the problem of timely detection of DDoS attacks in software-
defined networks (SDN), where the centralized controller architecture creates a critical point 
of failure in conditions of increasing traffic volumes. A combined detection method is 
proposed, which combines behavioral analysis of traffic using the Hurst index with selective 
deep packet inspection (DPI). The approach involves dynamic detection of anomalies based 
on a decrease in the traffic self-similarity index and further refinement of the attack type 
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using signature analysis. The method is integrated into the SDN control plane using CBQ and 
WRED mechanisms for adaptive queue management. Experimental studies in the Mininet + 
Floodlight environment confirmed that the combined Hurst–DPI approach provides an 
increase in attack detection accuracy up to 94%, a reduction in response time by 35%, and a 
reduction in false positives by 67% compared to traditional methods. The proposed algorithm 
allows to increase the fault tolerance of SDN networks and maintain the quality of service of 
critical services in the event of DDoS load. 
Keywords: software-defined networks, DDoS, Hurst index, DPI, QoS, fault tolerance. 
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1. Introduction
1.1.Problem Context and Mo-

tivation 
Distributed computing systems 

increasingly rely on heterogeneous nodes 
with varying capabilities, ranging from high-
performance servers to resource-constrained 
edge devices. Efficient task allocation in 
such environments requires sophisticated 
mechanisms capable of matching task 
requirements to node characteristics while 
accounting for dynamic system conditions. 
Traditional scheduling algorithms employ 
fixed rules and heuristics that prove unable 
to adapt to changing workload patterns, 
network conditions, and resource 
availability. Machine learning approaches 
offer data-driven solutions that learn from 
historical patterns and node telemetry, 
enabling adaptive decision-making in 
complex distributed environments. Neural 

networks have emerged as particularly 
promising tools for capturing complex 
relationships between node attributes and 
task execution success. However, 
architecture selection significantly impacts 
not only prediction performance but also 
computational efficiency, training 
requirements, and deployment feasibility in 
production environments. Despite growing 
interest in AI-based scheduling, limited 
research exists comparing different neural 
architectures specifically for resource 
allocation tasks. This study addresses this 
gap through systematic comparison of 
Convolutional Neural Network (CNN) and 
Multilayer Perceptron (MLP) architectures 
for node suitability classification in 
distributed computing systems. [15] 

1.2. Research Objectives and 
Scope 

The primary goal of this research is to 
evaluate CNN and MLP performance for 
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