Method of modular multiplication by invariable number for open key cryptography quick implementation in IoT

Authors

  • V.L. Selivanov National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” https://orcid.org/0000-0001-8519-6038
  • Ghassan Abdel Jalil Halil Al-Mrayat National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.18372/2073-4751.79.19371

Keywords:

modular multiplication, modular reductions, modular exponentiation, open key cryptography, precomputations

Abstract

The article proposes a method of accelerating the operation of modular multiplication important for cryptographic applications due to use of precomputations. The technology for forming a table of precomputations, whose depend on a invariable multiplier and modulus, has been developed in detail. A formalized description of the proposed procedure for accelerated modular multiplication using precomputations is given. The statement is illustrated by a numerical example. It has been theoretically proven and experimentally confirmed that by using preccomputations according to the proposed method, the implementation of this operation is accelerated by four times. At the same time, the execution time of the basic operation of public-key cryptography – modular exponentiation – is reduced by 1.6 times.

References

Kaloulli E., Zacharioudakis E. Survey of Cryptoprocessors Advances and Technological Trends. Lecture Notes in Networks and Systems. Vol. 1058. Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24) / ed. by K. Daimi, A. Al Sadoon. Cham, 2024. P. 411–430. DOI: 10.1007/978-3-031-65522-7-37.

Daiko I., Selivanov V. Fast exponential method on Galois fields for cryptographic applications. 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT) : proceedings, Athens, Greece, 13–15 October 2023 / IEEE. 2023. P. 1–4. DOI: 10.1109/DESSERT61349.2023.10416519.

Menezes A., van Oorschot P. C., Vanstone S. A. Handbook of Applied Cryptography. Boca Raton : CRC Press, 2001. 780 p.

Markovskyi O. et al. An Accelerate Approach for Public Key Cryptography Implementation on IoT Terminal Platforms. 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT) : proceedings, Athens, Greece, 13–15 October 2023 / IEEE. 2023. P. 1–4. DOI: 10.1109/DESSERT61349.2023.10416516.

Buhrow B., Gilbert B., Haider C. Parallel modular multiplication using 512-bit advanced vector instructions: RSA fault-injection countermeasure via interleaved parallel multiplication. Journal of Cryptographic Engineering. 2021. No. 2. P. 46–55. DOI: 10.1007/s13389-021-00256-9.

Montgomery P. Modular multiplication without trial division. Mathematics of Computation. 1985. Vol. 44, no. 170. P. 519–521.

Карацуба А. О., Офман Ю. П. Множення багатоцифрових чисел на автоматах. Доповіді Академії наук СРСР. 1962. № 2. С. 293–294.

Fừrer M. Faste Integer Multiplication. SIAM Journal on Computing. 2009. Vol. 39, no. 3.. P. 979–1005. DOI: 10.1137/070711716.

Марковский О. П., Аль-Мріят Гассан Абдель Жаліль. Метод прискореного модулярного множення для ефективної реалізації механізмів криптографічного захисту з відкритим ключом. Адаптивні системи автоматичного управління. 2024. Т. 1, № 44. С. 142–152. DOI: 10.20535/1560-8956.44.2024,302429.

Giorgi P., Imbert L., Izard T. Parallel modular multiplication on multi-core processors. 2013 IEEE 21st Symposium on Computer Arithmetic : proceedings, Austin, TX, USA, 07–10 April 2013 / IEEE. 2013. P. 135–142.

Barrett P. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. Lecture Notes in Computer Science. Vol. 263. Advances in Cryptology - CRYPTO '86. Proceedings / ed. by A. M. Odlyzko. Berlin, 1987. P. 311–323.

Published

2024-11-04

Issue

Section

Статті