Overview of approaches to the analysis of vibration signals during monitoring and diagnosis of machines
DOI:
https://doi.org/10.18372/2073-4751.68.16527Keywords:
machinery systems, vibration, Fourier transform, spectrum, caps, waveletAbstract
When the machine is running, vibration is generated and unwanted vibrations occur that disrupt the operation of machinery systems, resulting in malfunctions. Thus, vibration analysis has become an effective method for monitoring the health and performance of machinery. Vibration alarms contain important information about the condition of the equipment, such as the source of the fault and its severity. The paper provides an overview of techniques and tools that can be used when monitoring and diagnosing machinery for vibration. Each method and tool have its own characteristics, advantages and disadvantages discussed in the work.
References
Aherwar A., Khalid M.S. Vibration analysis techniques for gearbox diagnostic: a review //International Journal of Advanced Engineering Technology. – 2012. – Т. 3. – №. 2. – С. 04-12.
Brown D.N., Jorgensen J.C. Machine condition monitoring using vibration analysis //Bruel & Kjaer, Application Note. – 1987.
Неразрушающий контроль: справочник.Т. 7. Кн. 2. Вибродиагностика / Ф.Я. Балицкий, А.В. Барков, Н.А. Баркова и др. М.: Машиностроение, 2005. – 829 с.
Zoungrana W.B., Chehri A., Zimmermann A. Automatic classification of rotating machinery defects using machine learning (ML) algorithms //Human Centred Intelligent Systems. – Springer, Singapore, 2021. – С. 193-203.
Elango S., Aravind J.G., Boopathi S. Vibration analysis of bearing by using mechanical stethoscope //International Journal of Advanced Science and Research. – 2018. – Т. 3. – №. 1. – С. 1137-1149.
Kumar S. et al. Vibration based Fault Diagnosis Techniques for Rotating Mechanical Components //IOP Conference Series: Materials Science and Engineering. – IOP Publishing, 2018. – Т. 376. – С. 012109.
Shahzad K., Cheng P., Oelmann B. Architecture exploration for a high-performance and low-power wireless vibration analyzer //IEEE Sensors Journal. – 2012. – Т. 13. – №. 2. – С. 670-682.
Scheffer C., Girdhar P. Practical machinery vibration analysis and predictive maintenance. – Elsevier, 2004.
Ansari S.A., Baig R.A PC-based vibration analyzer for condition monitoring of process machinery //IEEE Transactions on Instrumentation and Measurement. – 1998. – Т. 47. – №. 2. – С. 378-383.
Majumder B.D., Roy J.K., Padhee S. Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: A review //IEEE Sensors Journal. – 2018. – Т. 19. – №. 4. – С. 1204-1214.
Sanders C.A. guide to vibration analysis and associated techniques in condition monitoring //DAK Consulting-Chiltern House http://www. dakacademy. com/newsite/index. php. – 2011. – С. 3-8.
Cheung K.W., Starling M.J., McGreevy P.D. A comparison of uniaxial and triaxial accelerometers for the assessment of physical activity in dogs //Journal of Veterinary Behavior. – 2014. – Т. 9. – №. 2. – С. 66-71.
Norton H.N. Handbook of Transducers, Prentice-Hall, Hoboken, NJ, USA, 1989.
Xianzhong S. et al. A novel PVDF based high-Gn shock accelerometer //Journal of Physics: Conference Series. – IOP Publishing, 2005. – Т. 13. – №. 1. – С. 025.
Goyal D., Pabla B.S. Condition based maintenance of machine tools–A review //CIRP Journal of Manufacturing Science and Technology. – 2015. – Т. 10. – С. 24-35.
Chaudhury S.B., Sengupta M., Mukherjee K. Vibration monitoring of rotating machines using MEMS accelerometer //International journal of scientific engineering and research. – 2014. – Т. 2. – №. 9. – С. 5-11.
Goyal D., Pabla B.S. The vibration monitoring methods and signal processing techniques for structural health monitoring: a review //Archives of Computational Methods in Engineering. – 2016. – Т. 23. – №. 4. – С. 585-594.
Fernandez A. Seismic Velocity Transducers, 2020/
Boyce M.P. Gas turbine engineering handbook. – Elsevier, 2011.
Gangsar P., Tiwari R. Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by SVM algorithms //Journal of Failure Analysis and Prevention. – 2014. – Т. 14. – №. 6. – С. 826-837.
Liu Y. et al. Asymmetric penalty sparse model based cepstrum analysis for bearing fault detections //Applied Acoustics. – 2020. – Т. 165. – С. 107288.
Randall R.B. Frequency Analysis, Bruel and Kjaer, Copenhagen, Denmark, 1987.
Trout J. Vibration analysis explained, 2020.
Loughlin P.J., Bernard G.D. Cohen–posch (positive) time–frequency distributions and their application to machine vibration analysis //Mechanical systems and signal processing. – 1997. – Т. 11. – №. 4. – С. 561-576.
Feng Z., Liang M., Chu F. Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples //Mechanical Systems and Signal Processing. – 2013. – Т. 38. – №. 1. – С. 165-205.
Runge J., Zmeureanu R. Forecasting energy use in buildings using artificial neural networks: A review //Energies. – 2019. – Т. 12. – №. 17. – С. 3254.
Castelino M. R. et al. Artificial neural network-based vibration signal analysis of rotary machines-case studies //Proceedings of the International Conference on Emerging Trends in Engineering. – 2014. – С. 211-218.
Serrano-Guerrero J., Romero F.P., Olivas J.A. Fuzzy logic applied to opinion mining: a review //Knowledge-Based Systems. – 2021. – Т. 222. – С. 107018.
Jayaswal P., Wadhwani A.K., Mulchandani K.B. Machine fault signature analysis //International Journal of Rotating Machinery. – 2008. – pp. 1–10.
Salido J.M.F., Murakami S. A comparison of two learning mechanisms for the automatic design of fuzzy diagnosis systems for rotating machinery //Applied Soft Computing. – 2004. – Т. 4. – №. 4. – С. 413-422.
Katoch S., Chauhan S.S., Kumar V. A review on genetic algorithm: past, present, and future //Multimedia Tools and Applications. – 2021. – Т. 80. – №. 5. – С. 8091-8126.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).