Модифікація алгоритму напівкерованого навчання на основі випадкових гаусівських полів та гармонічних функцій
DOI:
https://doi.org/10.18372/1990-5548.76.17664Ключові слова:
машинне навчання, напівкероване навчання, поширення мітки, Гауссові випадкові поля, k найближчих сусідів, гармонічні функціїАнотація
У статті запропоновано вдосконалення алгоритму напівкерованого навчання, заснованого на гауссових випадкових полях і гармонічних функціях. Напівкероване навчання на основі гаусових випадкових полів і гармонійних функцій – це метод напівкерованого навчання на основі графів, який використовує подібність точок даних для з’єднання немаркованих точок даних із позначеними точками даних, таким чином досягаючи розповсюдження міток. Запропоноване вдосконалення стосується способу визначення подібності між двома точками за допомогою гібридного ядра RBF-kNN. Це вдосконалення робить алгоритм більш стійким до шуму та покращує розповсюдження міток з урахуванням локальності. Запропоноване вдосконалення перевірено на п’яти синтетичних наборах даних. Результати вказують на відсутність покращень для наборів даних із великим запасом між класами, однак у наборах даних із низьким запасом запропонований підхід із гібридним ядром перевершує існуючі алгоритми з простим ядром.
Посилання
Zhu Xiaojin, and Zoubin Ghahramani, "Learning from labeled and unlabeled data with label propagation," ProQuest Number: INFORMATION TO ALL USERS, 2002.
Zhu, Xiaojin, Zoubin Ghahramani, and John D. Lafferty, "Semi-supervised learning using gaussian fields and harmonic functions," In Proceedings of the 20th International conference on Machine learning (ICML-03), 2003, pp. 912–919.
Peter G. Doyle, and J. Laurie Snell, "Random walks and electric networks," vol. 22, American Mathematical Soc., 1984. https://doi.org/10.5948/UPO9781614440222
Wu, Xiao-Ming, Zhenguo Li, Anthony So, John Wright, and Shih-Fu Chang, "Learning with partially absorbing random walks," Advances in neural information processing systems, 25, 2012.
Zhu, Xiaojin, John Lafferty, and Ronald Rosenfeld, "Semi-supervised learning with graphs (Ph. D. thesis)," Pittsburgh, PA, USA, 2005.
Jebara, Tony, Jun Wang, and Shih-Fu Chang, "Graph construction and b-matching for semi-supervised learning," In Proceedings of the 26th annual international conference on machine learning, 2009, pp. 441–448.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються в цьому журналі, погоджуються з наступними умовами:
Автори зберігають авторські права та надають журналу право першої публікації роботи, одночасно ліцензованої за ліцензією Creative Commons Attribution License, яка дозволяє іншим поширювати роботу з посиланням на авторство роботи та її першу публікацію в цьому журналі.
Автори можуть укладати окремі додаткові договірні угоди щодо неексклюзивного розповсюдження опублікованої в журналі версії роботи (наприклад, розміщувати її в інституційному репозиторії або публікувати в книзі) з посиланням на її першу публікацію в цьому журналі.
Авторам дозволяється та заохочується розміщувати свої роботи онлайн (наприклад, в інституційних репозиторіях або на своєму вебсайті) до та під час процесу подання, оскільки це може призвести до продуктивного обміну, а також до більш раннього та більшого цитування опублікованих робіт (див. Вплив відкритого доступу).