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Abstract—In this paper we propose an improvement for a semi-supervised learning algorithm based on 
Gaussian random fields and harmonic functions. Semi-supervised learning based on Gaussian random 
fields and harmonic functions is a graph-based semi-supervised learning method that uses data point 
similarity to connect unlabeled data points with labeled data points, thus achieving label propagation. 
The proposed improvement concerns the way of determining similarity between two points by using a 
hybrid RBF-kNN kernel. This improvement makes the algorithm more resilient to noise and makes label 
propagation more locality-aware. The proposed improvement was tested on five synthetic datasets. 
Results indicate that there is no improvement for datasets with big margin between classes, however in 
datasets with low margin proposed approach with hybrid kernel outperforms existing algorithms with a 
simple kernel. 

Index Terms—Machine learning; semi-supervised learning; label propagation; Gaussian random fields; 
k nearest neighbors; harmonic functions. 

I. INTRODUCTION 

By definition, semi-supervised learning (SSL) is 
a branch of machine learning that combines a small 
amount of labeled data with a large amount of 
unlabeled data during training to significantly 
improve training accuracy. It is between supervised 
and unsupervised. The concept of SSL avoids the 
cost of manually labeling the training data and 
makes use of the large amount of unlabeled data that 
is available in abundance. 

Based on the principle of model learning, semi-
supervised learning can be divided into inductive 
learning and transductive learning. 

Inductive learning is learning on specific 
(training) examples in an attempt to generalize the 
condition for the entire input space. This means that 
in inductive learning, a generalized function is 
learned using the existing training data set. This 
generalized function may be logically true, but may 
or may not be realistically true for every data point 
in the sample space. 

Transductive learning, on the other hand, 
generates rules based on specific training examples 
and then applies them to test examples. This 
approach is entirely domain-based and does not 
work for other input sample cases. Transductive 

learning does not solve a more general problem as 
an in-between space, but rather gets the specific 
answer that we really need. For example, forming a 
graph with connections between similar data points 
through which information is distributed. It does not 
require a training and testing step, and it does not 
need to train the classifier for the entire input space. 
II. ANALYZING REQUIREMENTS FOR THE DATASET 

The selection of data sampling criteria for semi-
supervised learning depends on the specific problem 
and available data, but some general criteria for data 
sampling for semi-supervised learning can be 
identified: 

● the availability of unlabeled data – one of the 
main requirements for semi-supervised learning is 
the availability of a large amount of unlabeled data, 
so the availability of unlabeled data is a key criterion 
for selecting data for semi-supervised learning, the 
more unlabeled data available, the more 
opportunities to improve model performance; 

● data diversity – the data selected must be 
diverse enough to represent the distribution of all 
data; if the data selected is biased or 
unrepresentative of the entire data set, this may 
adversely affect model performance; 
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● label sparsity – the sampled data should have 
a high degree of label sparsity, i.e. only a small 
percentage of the data points should be labeled; this 
is because semi-supervised learning aims to use 
unlabeled data to improve the model's performance 
on labeled data; 

● label quality – the quality of the labeled data 
is crucial for semi-supervised learning; if the labeled 
data is noisy or contains errors, it may cause the 
model to perform poorly, so it is very important to 
carefully select the quality of the labeled data; 

● label distribution – the distribution of labeled 
data must be representative of the general data 
distribution; if the labeled data is biased or does not 
reflect the true distribution, the model may not 
generalize well to new, unobserved data; 

● similarity – another data selection criterion for 
semi-supervised learning is the similarity between 
labeled and unlabeled data; if the labeled and 
unlabeled data are too different, it may be difficult 
for the model to extract useful information from the 
unlabeled data. 

Hence, data selection criteria for semi-supervised 
learning include availability of unlabeled data, 
diversity of data, sparsity of labels, quality of labels, 
distribution of labels, and similarity between labeled 
and unlabeled data. 

III. LABEL PROPAGATION METHOD BASED 
ON GAUSSIAN RANDOM FIELDS 

The problem statement of semi-supervised 
learning in general is: given l labeled points L={(x1, 
y1), ..., (xl, yl)} and u unlabeled points U={xl+1, ..., 
xl+u}; usually l<<u. Let n = l + u be the total 
number of data points. We will consider the example 
of a binary classification problem, so the labels will 
be binary:  0,  1y .  

In semi-supervised learning based on gaussian 
random fields and harmonic functions we consider a 
connected graph G = (V, E) with vertices W 
corresponding to data points n, with vertices L[1, ..., l] 
corresponding to labeled points with labels y1, …, yl, 
and vertices U[l+1, ..., l + u] corresponding to 
unlabeled points thus achieving label propagation as 
introduced in [1]. 

Our goal is to assign labels to the vertices of W. 
Let a symmetric weight matrix W of size n×n be 
given on the edges of the graph G. In the case when 

, mx   the weight matrix can be  
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where xid is the dth component of instance xi, 
represented as a vector , m

ix    and σ1, ..., σm are 
hyper-parameters of the length scale for each 
dimension [1]. Thus, neighboring points in the 
Euclidean space are assigned a large edge weight. Of 
course, other weights are possible, which may be 
more appropriate when x is a discrete or symbolic 
quantity. For our purposes, the matrix completely 
defines the structure of the data set. 

Our strategy is to first compute a real function 
:f V    on G with some properties that satisfy 

our learning problem and then assign labels based on 
f. The function f is restricted to take the value 
      l if i f i y   on labeled data for i = 1, ..., l. It 

is intuitive that unlabeled points that are close to 
each other on the graph should have similar labels. 
This motivates the choice of a quadratic energy 
function [1]: 

  2

,
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To specify probability distributions for functions 
f, a Gaussian field is formed ( )( ) E fp f e Z

   
component, which is normalized on all functions 
bounded by f1 on labeled data [2]. 

It is not difficult to show that the minimum 
energy function f = argmin f|L=f1E(f) is harmonious, 
namely, it satisfies f = 0 on unlabeled data points W 
and is equal to f1 on labeled data points L. Here Δ is 
the combinatorial Laplacian given in matrix form as 
Δ=D – W, and D = diag(di) is a diagonal matrix with 
elements i j ijd W   and W=[wij] is the weight 
matrix. 

The harmonic property means that the value of f 
at each unlabeled data point is the average value of f 
at neighboring points: 

1( ) ( )ij
i jj

f j w f i
d 

                    (3) 

for j = l + 1, ..., l + u which is consistent with our 
previous notion of smoothness f relative to the 
graph. Calculated as f = Pf, and P = D–1W is a 
matrix of transitions on the graph. According to the 
principle of maximum HF [3], f is unique and is 
either a constant or satisfies the condition 0<f (j)<1 
for j ϵ U. 

To calculate the harmonic solution explicitly in 
terms of matrix operations, the weight matrix W (and 
similarly D, P) is divided into 4 blocks after lth row 
and column [2]: 
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Let f = [f1 fin]T, and fin denotes the value of the 
unlabeled data points, the harmonic solution f = 0 
provided f|L=f1 looks like 

1 1( ) ( ) .u uu uu ul l uu ul lf D W W f I P P f       (5) 

For the transition from f to labels, an obvious rule 
is to assign label 1 to vertex i if f(i)>½, and labels 0 
in the opposite case [2]. In terms of the 
interpretation of the random walk, if f(i)>½, then, 
starting from i, a random walk is more likely to 
reach a positively labeled point than a negatively 
labeled one, as shown in [4].  

data, is often poorly evaluated in practice and does 
not reflect the purpose of classification. Class 
priorities are a valuable source of additional 
information. Suppose that the desired proportions for 
classes 1 and 0 are q and 1 – q, respectively, where 
these values are either given by an "oracle" or 
estimated from labeled data. In such a case, a simple 
procedure called class mass normalization (CMS) is 
used to bring the class distributions into line with the 
priority. The mass of class 1 is defined as   ,i uf i  

and the mass of class 0 as   .1–i uf i  Then these 
masses are scaled in such a way that the unlabeled 
point i belongs to class 1, if for f the following 
condition is met: 

( ) 1 ( )(1 ) .
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u u

u u
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
 

 
             (6) 

This method naturally extends to the general case 
with several labels. Optimization will be considered 
pd both on labeled and unlabeled data. 

A common parameter optimization criterion is 
the maximization of the likelihood of labeled data. 
However, the probability criterion is not suitable in 
this case, since the value f for labeled data is fixed 
during training, and furthermore the likelihood is 
meaningless for unlabeled data because there is no 
generative model. Instead, the average label entropy 
is used as a heuristic criterion for parameter 
optimization [5]. Average label entropy H(f) fields f 
is defined as  
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as well          log  1iH f i f i f i f i     

  log 1 f i   is the entropy of the field at a single 
unlabeled data point i. A random walk interpretation 
is used here f, relying on the principle of the 
maximum of harmonic functions, which guarantees 
that 0 < f(i)<1 for 1i l  . Low entropy means that 
f(i) is close to 0 or 1; it corresponds to intuition, 
which is good W (equivalently, a good set of 
hyperparameters {pd}) should result in confident 
labeling. Of course, there are many arbitrary data 
labels that have low entropy, which may indicate 
that this criterion will not work. However, a 
limitation is imposed f on labeled data – most of 
these low-entropy arbitrary labels do not conform to 
this constraint. In fact, the space of low-entropy 
labels achieved by harmonic energy minimization is 
small and lends itself well to tuning the σd 
parameters. 

However, there is a complication, which is that H 
has a minimum at 0 since 0.dp   As the length 
scale approaches zero, the tail of the weight function 
(1) becomes increasingly sensitive to distance. 
Ultimately, the label predicted for the unlabeled 
example dominates the label of its nearest neighbor, 
leading to the following equivalent labeling 
procedure: 

1) starting from a labeled data set, find an 
unlabeled point xu, which is closest to some labeled 
point xl;  

2) denote xu with a label xl, put xin in the labeled 
set and repeat. 

Since these are hard labels, the entropy is zero. 
This solution is desirable only when the classes are 
very well separated, and can be expected to be 
otherwise worse 

This complication can be avoided by smoothing 
the transition matrix: P is replaced by a smoothed 
matrix (1 ) ,P U P      and W is a uniform matrix 
with elements  1/ .ijW l u   

Gradient descent is used to find hyperparameters 
σd that minimizes H. The gradient is calculated as 

1

1 1 ( ) ( )log ,
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l u

i l
d d

H f i f i
u f i



 

   
    
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where the value of   / df i   can be calculated 
from the vector / ,u df   which is given by the 
formula: 

1( ) .u uu ul
uu u l

d d d

f P PI P f f    
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     (9)
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Both / ,he dP   and /ul dP   are submatrices 
of / 1( ) /d dPP       . Since the original 
matrix of transitions P is obtained by normalizing 
the weight matrix W,  
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finally  
2
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In the above equation, fu is used directly as label 
probabilities, i.e. p(class(xi) = 1) = fu(i). Since the 
previous information about the class is taken into 
account, it is necessary to minimize the entropy on 
the combined probabilities, therefore, the probability 
has the form: 
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q u f f i
f i
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IV. MODIFICATION OF THE ALGORITHM 
Construction of a complete weighted connected 

graph based on the radial basis function (hereinafter 
RBF) kernel, is the main method in [2] and [5]. 
However, other graph construction algorithms are 
also proposed, for example, using k nearest neighbors 
(kNN), or tanh-weighted graph methods [5]. 

To modify the original algorithm, the approach of 
combining two graph construction methods, namely 
the method based on the RBF kernel and kNN, will 
be used. This approach leaves the same basis of 
constructing a graph based on the similarity of 
features of vertices, but allows to reduce its density 
and the mutual influence of distant points and 
strengthens the connection of neighboring points due 
to the reduction of the number of edges in the graph 
thanks to kNN. 

However, since the weight matrix W must be 
non-negative and symmetric, it is necessary to 
modify the algorithm for constructing the kNN 
graph. 

Let A be the adjacency matrix obtained using the 
kNN method, the elements of which are equal to 1 if 
the vertices of the graph are connected by an edge, 
and 0 otherwise. The following operation is used to 
convert the adjacency matrix into a symmetric one 

Tmutual _ NN max( , ).k A A               (13) 

Having obtained a symmetric adjacency matrix, 
which represents the connections between the 
vertices of the graph, but does not reflect their 

similarity. After obtaining the modified adjacency 
matrix, it is combined with the RBF kernel to assign 
the edges of the weight graph to display the 
similarity of the vertices according to the formula: 

 , .ij ij i jW A K x x                        (14) 
In addition, the calculation of the initial value of 

the hyperparameter σ is introduced. When using the 
kNN method to build the weight matrix, the formula 
for calculating the initial value of σ using the 
formula proposed in [6] can be applied: 

1
( , )

,
3

n
i iki

x x
n




  ……  …….(15) 

where xI is the kth nearest neighbor of the point xi, 
and n is the number of graph vertices. 

The further algorithm remains without significant 
changes, only the use of the kNN method when 
optimizing the hyperparameter by gradient descent 
is adjusted. 

V. EXPERIMENT SETUP 

To test the effectiveness of the algorithm, an 
experiment was conducted on 5 data sets with 
different percentages of labeled and unlabeled data. 

A. Datasets 
Five data sets are considered in the work – three 

variations of the synthetic data set "Two Moons", the 
control data set "Circles" and the data set "Banana". 

Two echoes are a typical data set for evaluating 
the performance of semi-supervised learning. The 
main challenge with this data set is that naive label 
propagation algorithms will capture part of the other 
crescent depending on the distance between them. 
There are three data set options – wide, normal and 
narrow. 

A visualization of three variants of the “Two 
Moons” data set is shown in Fig. 1. 

The “Banana” data set is more complex because 
it consists of two variants, one of them can be 
demarcated with a small distance between classes, 
the second has several intersections. 

One of the classes is located in the middle of the 
other, but at the same time there is a small distance 
between them and, with the exception of a few 
anomalies, they do not intersect (Fig. 2a). 

The data set “Circles” acts as a control data set 
for testing the correctness of the algorithm 
implementation (Fig. 2b). Supervised and semi-
supervised learning should show high accuracy on 
this dataset. 
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Fig. 1. “Two Moons” dataset – wide (а), classic (b), 

tight (с) 

 
Fig. 2. Data sets “Banana” (a) and “Circles” (b) 

B. Methodology 
Data sets with 1, 2.5, 5, 7.5, 10, 15, and 50 

percent labeled data are used to test the performance 
of the algorithm. 

Given a similarity function based on the 
Euclidean distance between points, 

: .d d      This similarity function is 
chosen, with its help you can build a graph with 
connections based on the similarity or similarity of 
the characteristics of the vertices. 

The training array of labeled and unlabeled 
points X and the array of labels of a certain part of 
points L are also given. 

With the help of these data, a connected weighted 
graph is constructed based on the RBF kernel, which 
depends on a given similarity function Ps, as well as 
from the hyper parameter p (1). The initial value of 
the hyper parameter in this case is set empirically. 
As a result, we get a graph of the presented weight 
matrix W, which is the edges of the graph and the 
array X, which are its vertices. 

In parallel, the process of optimizing the hyper 
parameter σ using the gradient descent algorithm 
and formulae (8) – (12) takes place. The algorithm 
iteratively builds a new weighted graph, taking into 
account changes in the hyperparameter σ, by 
computing the entropy value of the Gaussian random 

field obtained from the main algorithm described 
below. 

After calculating the weight matrix W based on 
the optimized hyperparameter σ, the calculation of 
the main elements of the method based on Gaussian 
random fields and harmonic functions begins. First, 
the diagonal matrix D of the ranks of the vertices of 
the constructed graph is calculated. Then, with its 
help, the matrix of transitions on the graph is 
calculated P = D–1W. 

As mentioned above, difficulties may arise when 
the classes are not very well separated, and in order 
to improve the performance of the algorithm, it is 
suggested to smooth the transition matrix using the 
formula P̃ = εU + (1 – ε)P, and W is a uniform 
matrix with elements Wij = 1/(n), n is the size of the 
training sample together with the unlabeled data. 

At this stage, the main process of this algorithm 
takes place: spreading the probabilities of points 
belonging to a certain class due to the solution of the 
Laplace equation for the harmonic function and 
finding the harmonic solution. 

Finally, the process of distribution of labels based 
on the obtained probabilities is carried out with the 
help of normalization of the mass of classes for a 
more accurate result. 

After this process, we have a pseudo-labeled 
dataset that can be used to train supervised learning 
models and to test these models on a test dataset to 
evaluate the performance of the underlying 
algorithm. Intuitively, if the algorithm propagates 
pseudo-labels incorrectly, supervised learning 
models will perform worse on test samples after 
training on an invalid set with pseudo-labels. 

In order to carry out a more qualitative study, the 
performance of the semi-supervised learning 
algorithm based on graphs and Gaussian fields will 
be tested with constant hyper parameters on various 
models of supervised learning, such as: 

● Gaussian Process Classifier; 
● k-nearest neighbors classifier (K-Neighbors 

Classifier). 
The main metric for evaluating the quality of an 

algorithm is its accuracy on the test data set. 

VI. RESULTS 

The results of the experiments are given in 
Table I, and the used hyper parameters are given in 
Table II. 

As can be seen from the research results in 
Table 1, the original and modified algorithms do not 
differ much in terms of accuracy and show a very 
good result. The reason for this is the clear 
separation of the classes of the first two data sets, 



V.M. Sineglazov, O.I. Chumachenko, K.S. Lesohorskyi 
Modification of Semi-supervised Algorithm Based on Gaussian Random Fields and Harmonic Functions               33 
 

 

which allows even the unmodified algorithm to 
propagate pseudo-labels to unlabeled data without 
error. However, when examining the last data set, 
which contains a small cross-section of classes, the 
results of the methods worsened, but the modified 
algorithm showed a more accurate result compared 
to all supervised learning models. 

TABLE I. ACCURACY OF CLASSIFIERS 

Algorithm / Percentage 
of labeled data 1% 10% 50% 

Two Moons Wide GP 97.2% 97.4% 97.4% 
Two Moons Wide (GP 
Modified) 

97.4% 97.4% 97.4% 

Two Moons Wide (KN) 100% 100% 100% 
Two Moons Wide (KN 
Modified) 

100% 100% 100% 

Two Moons Classic GP 99.9% 99.9% 99.9% 
Two Moons Classic (GP 
Modified) 

99.9% 99.9% 99.9% 

Two Moons Classic (KN) 100% 100% 100% 
Two Moons Classic (KN 
Modified) 

100% 100% 100% 

Two Moons Tight GP 78.6% 90.5% 90.9% 
Two Moons Tight (GP 
Modified) 

82.1% 92.4% 90.9% 

Two Moons Tight (KN) 86.5% 92.9% 95.8% 
Two Moons Tight (KN 
Modified) 

88.0% 94.0% 95.6% 

Banana GP 50.1% 49.7% 50.7% 
Banana (GP Modified) 50.5% 49.9% 51.7% 
Banana (KN) 50.5% 50.1% 70.0% 
Banana (KN Modified) 50.8% 73.4% 94.5% 
Circles GP 78.5% 100% 100% 
Circles (GP Modified) 96.3% 100% 100% 
Circles (KN) 74.1% 99.9% 100% 
Circles (KN Modified) 91.5% 99.9% 100% 

TABLE II. HYPERPARAMETERS OF CLASSIFIERS 

Algorithm σ k 
Two Moons Wide [0.3, 0.3] 20 
Two Moons Classic [0.17, 0.13] 13 
Two Moons Tight [0.05, 0.05] 25 
Banana [0.08, 0.04] 15 
Circles [0.17, 0.13] 20 

Let's consider the results of algorithm forecasts 
using the Gaussian Process model as an example, 
because it has the largest difference in forecast 
accuracy at 1% of labeled data. Figure 3a shows the 
forecast results of the model that used the data of the 
original algorithm for training, in the Fig. 3b – data 
of the modified algorithm. 

It can be seen in the figures that the modified 
algorithm stopped the flow of one class to another 
and thus improved the result. 

 
Fig. 3. Banana dataset propagated by (a) basic version of 

GP (b) modified version of GP 

It can be assumed that the modified algorithm 
copes better with data containing class intersections 
due to reducing the density of the graph to weaken 
the influence of distant vertices on each other. This 
assumption will be tested on the following datasets. 

VII. CONCLUSION 

According to the results of experiments on 
synthetic data sets, the strengths and weaknesses of 
both the original algorithm and the developed 
modification were revealed. 

The modification showed itself best when 
performing tasks on data that have clearly identified 
classes that may have intersections or noisy data that 
lead to the distribution of labels to the wrong areas 
by the original algorithm. The modification solves 
this problem by reducing the density of the graph 
and the number of connections between its vertices. 

However, as noted in the algorithm performance 
review, the modification does not perform better on 
datasets with clearly separated classes and datasets 
with complex group structure. 
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В. М. Синєглазов, О. І. Чумаченко, К. С. Лесогорський. Модифікація алгоритму напівкерованого 
навчання на основі випадкових гаусівських полів та гармонічних функцій 
У статті запропоновано вдосконалення алгоритму напівкерованого навчання, заснованого на гауссових 
випадкових полях і гармонічних функціях. Напівкероване навчання на основі гаусових випадкових полів і 
гармонійних функцій – це метод напівкерованого навчання на основі графів, який використовує подібність 
точок даних для з’єднання немаркованих точок даних із позначеними точками даних, таким чином досягаючи 
розповсюдження міток. Запропоноване вдосконалення стосується способу визначення подібності між двома 
точками за допомогою гібридного ядра RBF-kNN. Це вдосконалення робить алгоритм більш стійким до шуму 
та покращує розповсюдження міток з урахуванням локальності. Запропоноване вдосконалення перевірено на 
п’яти синтетичних наборах даних. Результати вказують на відсутність покращень для наборів даних із великим 
запасом між класами, однак у наборах даних із низьким запасом запропонований підхід із гібридним ядром 
перевершує існуючі алгоритми з простим ядром. 
Ключові слова: машинне навчання; напівкероване навчання; поширення мітки; Гауссові випадкові поля; k 
найближчих сусідів; гармонічні функції. 
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