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Abstract—In this paper we propose an improvement for a semi-supervised learning algorithm based on
Gaussian random fields and harmonic functions. Semi-supervised learning based on Gaussian random
fields and harmonic functions is a graph-based semi-supervised learning method that uses data point
similarity to connect unlabeled data points with labeled data points, thus achieving label propagation.
The proposed improvement concerns the way of determining similarity between two points by using a
hybrid RBF-kNN kernel. This improvement makes the algorithm more resilient to noise and makes label
propagation more locality-aware. The proposed improvement was tested on five synthetic datasets.
Results indicate that there is no improvement for datasets with big margin between classes, however in
datasets with low margin proposed approach with hybrid kernel outperforms existing algorithms with a

simple kernel.

Index Terms—Machine learning; semi-supervised learning; label propagation; Gaussian random fields;

k nearest neighbors; harmonic functions.
I. INTRODUCTION

By definition, semi-supervised learning (SSL) is
a branch of machine learning that combines a small
amount of labeled data with a large amount of
unlabeled data during training to significantly
improve training accuracy. It is between supervised
and unsupervised. The concept of SSL avoids the
cost of manually labeling the training data and
makes use of the large amount of unlabeled data that
is available in abundance.

Based on the principle of model learning, semi-
supervised learning can be divided into inductive
learning and transductive learning.

Inductive learning is learning on specific
(training) examples in an attempt to generalize the
condition for the entire input space. This means that
in inductive learning, a generalized function is
learned using the existing training data set. This
generalized function may be logically true, but may
or may not be realistically true for every data point
in the sample space.

Transductive learning, on the other hand,
generates rules based on specific training examples
and then applies them to test examples. This
approach is entirely domain-based and does not
work for other input sample cases. Transductive

learning does not solve a more general problem as
an in-between space, but rather gets the specific
answer that we really need. For example, forming a
graph with connections between similar data points
through which information is distributed. It does not
require a training and testing step, and it does not
need to train the classifier for the entire input space.

II. ANALYZING REQUIREMENTS FOR THE DATASET

The selection of data sampling criteria for semi-
supervised learning depends on the specific problem
and available data, but some general criteria for data
sampling for semi-supervised learning can be
identified:

e the availability of unlabeled data — one of the
main requirements for semi-supervised learning is
the availability of a large amount of unlabeled data,
so the availability of unlabeled data is a key criterion
for selecting data for semi-supervised learning, the
more unlabeled data available, the more
opportunities to improve model performance;

e data diversity — the data selected must be
diverse enough to represent the distribution of all
data; if the data selected is biased or
unrepresentative of the entire data set, this may
adversely affect model performance;
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e label sparsity — the sampled data should have
a high degree of label sparsity, i.e. only a small
percentage of the data points should be labeled; this
is because semi-supervised learning aims to use
unlabeled data to improve the model's performance
on labeled data;

e label quality — the quality of the labeled data
is crucial for semi-supervised learning; if the labeled
data is noisy or contains errors, it may cause the
model to perform poorly, so it is very important to
carefully select the quality of the labeled data;

e label distribution — the distribution of labeled
data must be representative of the general data
distribution; if the labeled data is biased or does not
reflect the true distribution, the model may not
generalize well to new, unobserved data;

e similarity — another data selection criterion for
semi-supervised learning is the similarity between
labeled and unlabeled data; if the labeled and
unlabeled data are too different, it may be difficult
for the model to extract useful information from the
unlabeled data.

Hence, data selection criteria for semi-supervised
learning include availability of unlabeled data,
diversity of data, sparsity of labels, quality of labels,
distribution of labels, and similarity between labeled
and unlabeled data.

III. LABEL PROPAGATION METHOD BASED
ON GAUSSIAN RANDOM FIELDS

The problem statement of semi-supervised
learning in general is: given / labeled points L={(x,,
V1), .., (X, 1)} and u unlabeled points U={x;.y, ...,
Xiu); usually I<<u. Let n = [ + u be the total
number of data points. We will consider the example
of a binary classification problem, so the labels will
be binary: y €{0, 1}.

In semi-supervised learning based on gaussian
random fields and harmonic functions we consider a
connected graph G = (¥, E) with vertices W
corresponding to data points », with vertices L[1, ..., 1]
corresponding to labeled points with labels y,, ..., y,
and vertices U[/+1, .., [ + u] corresponding to
unlabeled points thus achieving label propagation as
introduced in [1].

Our goal is to assign labels to the vertices of W.
Let a symmetric weight matrix W of size nxn be
given on the edges of the graph G. In the case when
x e R”, the weight matrix can be

2
m (x —X. )
_ _ id jd
Wy=exp| =3 ~——"|,

d=1 Gd

(1)

where x;; is the dth component of instance x;,

represented as a vector x, € R”, and oy, ..., G,, are
hyper-parameters of the length scale for each
dimension [1]. Thus, neighboring points in the
Euclidean space are assigned a large edge weight. Of
course, other weights are possible, which may be
more appropriate when x is a discrete or symbolic
quantity. For our purposes, the matrix completely
defines the structure of the data set.

Our strategy is to first compute a real function

f:V—>R on G with some properties that satisfy

our learning problem and then assign labels based on
f- The function f is restricted to take the value

f(i)=/,(i) =y, onlabeled data for i = 1, ..., L. It
is intuitive that unlabeled points that are close to
each other on the graph should have similar labels.
This motivates the choice of a quadratic energy
function [1]:

EH=~Sw, (£()-rG)). @
L

To specify probability distributions for functions
/, a Gaussian field is formed p;(f)=e"" )/ZB

component, which is normalized on all functions
bounded by f; on labeled data [2].

It is not difficult to show that the minimum
energy function /= argmin f;,-nE(f) is harmonious,
namely, it satisfies /' = 0 on unlabeled data points W
and is equal to f; on labeled data points L. Here A is
the combinatorial Laplacian given in matrix form as
A=D — W, and D = diag(d,) is a diagonal matrix with
elements d, =2 W, and W=[w;] is the weight

ij
matrix.

The harmonic property means that the value of f
at each unlabeled data point is the average value of
at neighboring points:

S =S, (D) ®
d./' #J

forj =1+ 1, .., [ + u which is consistent with our
previous notion of smoothness f relative to the
graph. Calculated as f = P; and P = D\ W is a
matrix of transitions on the graph. According to the
principle of maximum HF [3], f is unique and is
either a constant or satisfies the condition 0<f'(j)<1
forje U.

To calculate the harmonic solution explicitly in
terms of matrix operations, the weight matrix W (and
similarly D, P) is divided into 4 blocks after /th row
and column [2]:
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Let f = [f; fi]", and f,, denotes the value of the
unlabeled data points, the harmonic solution /' = 0
provided fi;-n looks like

fo=D, W)W, fi=UI=P,)"F,f. (5

For the transition from f to labels, an obvious rule
is to assign label 1 to vertex i if f{i)>'%, and labels 0
in the opposite case [2]. In terms of the
interpretation of the random walk, if f{i)>', then,
starting from i, a random walk is more likely to
reach a positively labeled point than a negatively
labeled one, as shown in [4].

data, is often poorly evaluated in practice and does
not reflect the purpose of classification. Class
priorities are a valuable source of additional
information. Suppose that the desired proportions for
classes 1 and 0 are ¢ and 1 — ¢, respectively, where
these values are either given by an "oracle" or
estimated from labeled data. In such a case, a simple
procedure called class mass normalization (CMS) is
used to bring the class distributions into line with the

priority. The mass of class 1 is defined as %, f; (i),

and the mass of class 0 as 2, (1 —f, (z)) Then these

masses are scaled in such a way that the unlabeled
point i belongs to class 1, if for f the following
condition is met:

JAO RPN S N U) (6)
Sro” TrSa- oy

This method naturally extends to the general case
with several labels. Optimization will be considered
pa both on labeled and unlabeled data.

A common parameter optimization criterion is
the maximization of the likelihood of labeled data.
However, the probability criterion is not suitable in
this case, since the value f for labeled data is fixed
during training, and furthermore the likelihood is
meaningless for unlabeled data because there is no
generative model. Instead, the average label entropy
is used as a heuristic criterion for parameter
optimization [5]. Average label entropy H(f) fields f
is defined as

I+u

H(f)= i ST H.(£()),

i=l+1

(7

as  well H,-(f(l'))=—f(i)10gf(i)_(1_f(i))

~log(1—f(i)) is the entropy of the field at a single

unlabeled data point i. A random walk interpretation
is used here f, relying on the principle of the
maximum of harmonic functions, which guarantees
that 0 < f{i)<1 for i >/ +1. Low entropy means that
f(i) is close to 0 or 1; it corresponds to intuition,
which is good W (equivalently, a good set of
hyperparameters {p,}) should result in confident
labeling. Of course, there are many arbitrary data
labels that have low entropy, which may indicate
that this criterion will not work. However, a
limitation is imposed f on labeled data — most of
these low-entropy arbitrary labels do not conform to
this constraint. In fact, the space of low-entropy
labels achieved by harmonic energy minimization is
small and lends itself well to tuning the oy
parameters.

However, there is a complication, which is that H
has a minimum at 0 since p, — 0. As the length

scale approaches zero, the tail of the weight function
(1) becomes increasingly sensitive to distance.
Ultimately, the label predicted for the unlabeled
example dominates the label of its nearest neighbor,
leading to the following equivalent labeling
procedure:

1) starting from a labeled data set, find an
unlabeled point x,, which is closest to some labeled
point x;;

2) denote x, with a label x;, put x;, in the labeled
set and repeat.

Since these are hard labels, the entropy is zero.
This solution is desirable only when the classes are
very well separated, and can be expected to be
otherwise worse

This complication can be avoided by smoothing
the transition matrix: P is replaced by a smoothed

matrix P =¢eU +(1—¢)P, and W is a uniform matrix
with elements W, =1/ (I +u).

Gradient descent is used to find hyperparameters
o, that minimizes H. The gradient is calculated as

/6 ) e,

where the value of 0f(i)/0c, can be calculated
from the vector of, /dc,, which is given by the

aH 1 I+u
__;z

i=l+1
oo,

()

formula:
of - [oP oP
4 —([-P oy ul £ 9
do, ( ) (8Gdf“ 60dflj ©)
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Both 9P, /dc,, and OP,/0c, are submatrices

of 0P/0c,=(1-€)0P/0c,. Since the original

matrix of transitions P is obtained by normalizing
the weight matrix W,

aW-- I+u aW
y u
— pi_ e
ap,-j :acd jz ]acd (10)
o, PR
finally
ow; :2wl.j(xdl.—xdj)2 (an
0 y '
Oy Oy

In the above equation, f, is used directly as label
probabilities, i.e. p(class(x;) = 1) = f,(i). Since the
previous information about the class is taken into
account, it is necessary to minimize the entropy on
the combined probabilities, therefore, the probability
has the form:

q(u=3"1)£,0)
a(u=3_1,)£O+0=-Y f,(1-£,)

IV. MODIFICATION OF THE ALGORITHM

fi)=

(12)

Construction of a complete weighted connected
graph based on the radial basis function (hereinafter
RBF) kernel, is the main method in [2] and [5].
However, other graph construction algorithms are
also proposed, for example, using & nearest neighbors
(KNN), or tanh-weighted graph methods [5].

To modify the original algorithm, the approach of
combining two graph construction methods, namely
the method based on the RBF kernel and kNN, will
be used. This approach leaves the same basis of
constructing a graph based on the similarity of
features of vertices, but allows to reduce its density
and the mutual influence of distant points and
strengthens the connection of neighboring points due
to the reduction of the number of edges in the graph
thanks to KNN.

However, since the weight matrix W must be
non-negative and symmetric, it is necessary to
modify the algorithm for constructing the kNN
graph.

Let A be the adjacency matrix obtained using the
kNN method, the elements of which are equal to 1 if
the vertices of the graph are connected by an edge,
and 0 otherwise. The following operation is used to
convert the adjacency matrix into a symmetric one

(13)

Having obtained a symmetric adjacency matrix,
which represents the connections between the
vertices of the graph, but does not reflect their

mutual kNN =max(4,4").

similarity. After obtaining the modified adjacency
matrix, it is combined with the RBF kernel to assign
the edges of the weight graph to display the
similarity of the vertices according to the formula:

(14)

In addition, the calculation of the initial value of
the hyperparameter o is introduced. When using the
kNN method to build the weight matrix, the formula
for calculating the initial value of o using the
formula proposed in [6] can be applied:

o D WX, x,)
3n ’

VVII = A;','Kcs (xi’x_i)'

where x; is the kth nearest neighbor of the point x;,
and #n is the number of graph vertices.

The further algorithm remains without significant
changes, only the use of the kNN method when
optimizing the hyperparameter by gradient descent
is adjusted.

V. EXPERIMENT SETUP

To test the effectiveness of the algorithm, an
experiment was conducted on 5 data sets with
different percentages of labeled and unlabeled data.

A. Datasets

Five data sets are considered in the work — three
variations of the synthetic data set "Two Moons", the
control data set "Circles" and the data set "Banana".

Two echoes are a typical data set for evaluating
the performance of semi-supervised learning. The
main challenge with this data set is that naive label
propagation algorithms will capture part of the other
crescent depending on the distance between them.
There are three data set options — wide, normal and
narrow.

A visualization of three variants of the “Two
Moons” data set is shown in Fig. 1.

The “Banana” data set is more complex because
it consists of two variants, one of them can be
demarcated with a small distance between classes,
the second has several intersections.

One of the classes is located in the middle of the
other, but at the same time there is a small distance
between them and, with the exception of a few
anomalies, they do not intersect (Fig. 2a).

The data set “Circles” acts as a control data set
for testing the correctness of the algorithm
implementation (Fig. 2b). Supervised and semi-
supervised learning should show high accuracy on
this dataset.
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a) b) C)
Fig. 1. “Two Moons” dataset — wide (a), classic (b),
tight (c)

™~
.-",

Fig. 2. Data sets “Banana” (a) and “Circles” (b)

B. Methodology

Data sets with 1, 2.5, 5, 7.5, 10, 15, and 50
percent labeled data are used to test the performance
of the algorithm.

Given a similarity function based on the
Euclidean distance between points,
¥:R?xR?—>R. This similarity function is
chosen, with its help you can build a graph with
connections based on the similarity or similarity of
the characteristics of the vertices.

The training array of labeled and unlabeled
points X and the array of labels of a certain part of
points L are also given.

With the help of these data, a connected weighted
graph is constructed based on the RBF kernel, which
depends on a given similarity function Py, as well as
from the hyper parameter p (1). The initial value of
the hyper parameter in this case is set empirically.
As a result, we get a graph of the presented weight
matrix W, which is the edges of the graph and the
array X, which are its vertices.

In parallel, the process of optimizing the hyper
parameter ¢ using the gradient descent algorithm
and formulae (8) — (12) takes place. The algorithm
iteratively builds a new weighted graph, taking into
account changes in the hyperparameter o, by
computing the entropy value of the Gaussian random

field obtained from the main algorithm described
below.

After calculating the weight matrix W based on
the optimized hyperparameter o, the calculation of
the main elements of the method based on Gaussian
random fields and harmonic functions begins. First,
the diagonal matrix D of the ranks of the vertices of
the constructed graph is calculated. Then, with its
help, the matrix of transitions on the graph is
calculated P = D'W.

As mentioned above, difficulties may arise when
the classes are not very well separated, and in order
to improve the performance of the algorithm, it is
suggested to smooth the transition matrix using the
formula P = €U + (1 — ¢)P, and W is a uniform
matrix with elements W;; = 1/(n), n is the size of the
training sample together with the unlabeled data.

At this stage, the main process of this algorithm
takes place: spreading the probabilities of points
belonging to a certain class due to the solution of the
Laplace equation for the harmonic function and
finding the harmonic solution.

Finally, the process of distribution of labels based
on the obtained probabilities is carried out with the
help of normalization of the mass of classes for a
more accurate result.

After this process, we have a pseudo-labeled
dataset that can be used to train supervised learning
models and to test these models on a test dataset to
evaluate the performance of the underlying
algorithm. Intuitively, if the algorithm propagates
pseudo-labels incorrectly, supervised learning
models will perform worse on test samples after
training on an invalid set with pseudo-labels.

In order to carry out a more qualitative study, the
performance of the semi-supervised learning
algorithm based on graphs and Gaussian fields will
be tested with constant hyper parameters on various
models of supervised learning, such as:

e Gaussian Process Classifier;

e /-nearest neighbors classifier (K-Neighbors
Classifier).

The main metric for evaluating the quality of an
algorithm is its accuracy on the test data set.

VI. RESULTS

The results of the experiments are given in
Table I, and the used hyper parameters are given in
Table II.

As can be seen from the research results in
Table 1, the original and modified algorithms do not
differ much in terms of accuracy and show a very
good result. The reason for this is the clear
separation of the classes of the first two data sets,
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which allows even the unmodified algorithm to
propagate pseudo-labels to unlabeled data without
error. However, when examining the last data set,
which contains a small cross-section of classes, the
results of the methods worsened, but the modified
algorithm showed a more accurate result compared
to all supervised learning models.

TABLE L. ACCURACY OF CLASSIFIERS
Algorithm / Percentage
] of labeled data i 1% 10% S0%
Two Moons Wide GP 97.2% |97.4% |97.4%
Two Moons Wide (GP 97.4% |97.4% |97.4%
Modified)
Two Moons Wide (KN) 100% [100% |100%
Two Moons Wide (KN 100% [100% |100%
Modified)
Two Moons Classic GP 99.9% 199.9% [99.9%
Two Moons Classic (GP {99.9% |99.9% [99.9%
Modified)
Two Moons Classic (KN) |100% [100% |100%
Two Moons Classic (KN | 100% [100% |100%
Modified)
Two Moons Tight GP 78.6% [90.5% |90.9%
Two Moons Tight (GP 82.1% [92.4% |90.9%
Modified)
Two Moons Tight (KN) 86.5% 192.9% |95.8%
Two Moons Tight (KN 88.0% [94.0% |95.6%
Modified)
Banana GP 50.1% [49.7% |50.7%
Banana (GP Modified) 50.5% [49.9% |51.7%
Banana (KN) 50.5% [50.1% |70.0%
Banana (KN Modified) 50.8% |73.4% |94.5%
Circles GP 78.5% [100% | 100%
Circles (GP Modified) 96.3% [100% | 100%
Circles (KN) 74.1% [99.9% |100%
Circles (KN Modified) 91.5% [99.9% |100%
TABLE II. HYPERPARAMETERS OF CLASSIFIERS
Algorithm o k
Two Moons Wide [0.3, 0.3] 20
Two Moons Classic [0.17,0.13] 13
Two Moons Tight [0.05, 0.05] 25
Banana [0.08, 0.04] 15
Circles [0.17,0.13] 20

Let's consider the results of algorithm forecasts
using the Gaussian Process model as an example,
because it has the largest difference in forecast
accuracy at 1% of labeled data. Figure 3a shows the
forecast results of the model that used the data of the
original algorithm for training, in the Fig. 3b — data
of the modified algorithm.

It can be seen in the figures that the modified
algorithm stopped the flow of one class to another
and thus improved the result.

a) b)
Fig. 3. Banana dataset propagated by (a) basic version of
GP (b) modified version of GP

It can be assumed that the modified algorithm
copes better with data containing class intersections
due to reducing the density of the graph to weaken
the influence of distant vertices on each other. This
assumption will be tested on the following datasets.

VII. CONCLUSION

According to the results of experiments on
synthetic data sets, the strengths and weaknesses of
both the original algorithm and the developed
modification were revealed.

The modification showed itself best when
performing tasks on data that have clearly identified
classes that may have intersections or noisy data that
lead to the distribution of labels to the wrong areas
by the original algorithm. The modification solves
this problem by reducing the density of the graph
and the number of connections between its vertices.

However, as noted in the algorithm performance
review, the modification does not perform better on
datasets with clearly separated classes and datasets
with complex group structure.

REFERENCES

[1] Zhu Xiaojin, and Zoubin Ghahramani, "Learning
from labeled and wunlabeled data with label
propagation,”" ProQuest Number: INFORMATION
TO ALL USERS, 2002.

[2] Zhu, Xiaojin, Zoubin Ghahramani, and John D.
Lafferty, "Semi-supervised learning using gaussian
fields and harmonic functions," In Proceedings of the

20th International conference on Machine learning
(ICML-03), 2003, pp. 912-919.

[3] Peter G. Doyle, and J. Laurie Snell, "Random walks
and electric networks," vol. 22, American
Mathematical Soc., 1984.
https://doi.org/10.5948/UP09781614440222

[4] Wu, Xiao-Ming, Zhenguo Li, Anthony So, John
Wright, and Shih-Fu Chang, "Learning with partially
absorbing random walks," Advances in neural
information processing systems, 25, 2012.

[5] Zhu, Xiaojin, John Lafferty, and Ronald Rosenfeld,
"Semi-supervised learning with graphs (Ph. D.
thesis)," Pittsburgh, PA, USA, 2005.



34 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 28-34

[6] Jebara, Tony, Jun Wang, and Shih-Fu Chang, "Graph international conference on machine learning, 2009,
construction and b-matching for semi-supervised pp. 441-448.
learning," In Proceedings of the 26th annual Received March 18, 2023

Sineglazov Victor. ORCID 0000-0002-3297-9060. Doctor of Engineering Science. Professor. Head of the Department

of Aviation Computer-Integrated Complexes.

Faculty of Air Navigation Electronics and Telecommunications, National Aviation University, Kyiv, Ukraine.

Education: Kyiv Polytechnic Institute, Kyiv, Ukraine, (1973).

Research area: Air Navigation, Air Traffic Control, Identification of Complex Systems, Wind/Solar power plant,

artificial intelligence.

Publications: more than 700 papers.

E-mail: svm@nau.edu.ua

Chumachenko Olena. ORCID 0000-0003-3006-7460. Doctor of Engineering Science. Professor. Head of the Department
Artificial Intelligence, Faculty of Informatics and Computer Science, National Technical University of Ukraine "Igor
Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Research area: artificial neural networks, artificial intelligence

Publications: more than 120 papers.

E-mail: eliranvik@gmail.com

Lesohorskyi Kyrylo. ORCID 0000-0002-3297-9060. PhD Student.

Department of Information Systems, Faculty of Informatics and Computer Science, National Technical University of
Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Education: National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, (2022).
Research interests: artificial neural networks, artificial intelligence, distributed computing.

Publications: 3.

E-mail: lesogor.kirill@gmail.com

B. M. Cunernazos, O. 1. Yymauenko, K. C. Jlecoropcbkmii. Moaudikania anropurmy HaniBKepoBaHOI0O
HABYAHHS HA OCHOBi BUIIAJKOBHMX rayCiBCbKHUX IOJIB Ta TApMOHIYHMX (YHKLiH

VY craTTi 3amponoHOBaHO BJIOCKOHAJEHHS ajJrOPUTMY HAIliBKEpPOBAaHOIO HAaBYaHHS, 3aCHOBAHOI'O Ha TayCCOBHX
BUIIAJIKOBUX MOJAX 1 rapMoHiuHMX (QyHKHisx. HamiBkepoBaHe HaBYaHHS Ha OCHOBI TayCOBHX BHIIAJIKOBHX IOJIB i
rapMOHIHHUX (DYHKILIH — Il METOJ HaIliBKEpOBAHOI'O HABYAHHS Ha OCHOBI rpadiB, SIKMH BHKOPHCTOBYE TOAIOHICTH
TOYOK JAHHX JJIS 3’€HAHHS HEMapKOBaHMUX TOYOK JAHHX i3 MO3HAUYEHUMH TOUYKAMHU JaHUX, TAKUM YWHOM JOCSATAI04H
PO3IIOBCIOKEHHSI MITOK. 3amporoHOBaHE BIOCKOHAJEHHS CTOCYETHCS CIOCOOY BH3HAa4YeHHs MOAIOHOCTI MK ABOMa
TOYKaMH 3a goromoroto riopunHoro siapa RBF-kNN. Ile BrockoHaneHHs poOOUTh alNropUTM OUTBII CTIHKHM JI0 IIyMy
Ta TIOKpAIlye PO3MOBCIOKEHHS MITOK 3 YpaxyBaHHSM JIOKaJIbHOCTI. 3alpONOHOBaHE BIOCKOHAJICHHS IIEPEBIPEHO Ha
II’SITH CHHTETHYHUX HaOopax JaHuX. Pe3ynbTraTi BKa3yroTh Ha BiACYTHICTh IOKpAILEHb Il HA0OPIB TaHMX i3 BETHKAM
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