Направляючі косинуси картезіанського вектора як оптимальний розподіл багатоопційних гібридних функцій
DOI:
https://doi.org/10.18372/1990-5548.63.14523Ключові слова:
Машинобудування, доктрина багатоопційності, умовна оптимальність, гібридно-опційна ефективність, картезіанський вектор, направляючий косинус, максимальна невизначеність, варіаційна задачаАнотація
Здійснено спробу відкрити правдоподібну причину, що пояснює існування умов оптимальності направляючих косинусів картезіанського вектору, що є важливим в енергетичному машинобудуванні, за допомогою доктрини умовної оптимальності ентропії багатоопційних гібридних функцій. Обґрунтування здійснено в термінах теорії варіаційного обчислення за допомогою спеціальної міри невизначеності функцій гібридно-опційної ефективності, що включає ентропію тих гібридних функцій традиційного Шеннонівського стилю. У випадках, які вивчаються, розв’язки найпростішої варіаційної задачі, що є величинами знаними як направляючі косинуси Картезіанського вектору, обумовлені специфікованими натуральними логарифмами квадратичних форм. Пропонується оцінювати ступінь невизначеності/визначеності величини та спрямування картезіанського вектору із використанням цільового функціоналу. Це є новим поглядом на наукове пояснення добре відомої залежності виведеної іншим шляхом. Теоретичні міркування, які розвиваються, а також математичні викладки завершуються найпростішим числовим прикладом варійованої величини багатоопційної гібридної функції, результуючій в цільовому функціоналі.
Посилання
T. W. Wild and M. J. Kroes, Aircraft Powerplants: 8th ed., New York, New York, USA: McGraw-Hill, Education, 2014, 756 p.
K. Kuiken, Diesel Engines for Ship Propulsion and Power Plants from 0 to 100,000 kW: in 2 parts, Onnen, The Netherlands: Target Global Energy Training, 2008, 1 part, 512 p.
K. Kuiken, Diesel Engines for Ship Propulsion and Power Plants from 0 to 100,000 kW: in 2 parts, Onnen, The Netherlands: Target Global Energy Training, 2008, 2 part, 444 p.
D. Woodyard, Pounder’s Marine Diesel Engines and Gas Turbines: 9th Edition, Oxford, Jordan Hill, Great Britain: Butterworth-Heinemann, Elsevier Linacre House, 2009, 896 p. https://doi.org/10.1016/B978-0-7506-8984-7.00031-X
M. J. Kroes, W. A. Watkins, F. Delp, and R. Sterkenburg, Aircraft Maintenance and Repair: 7th ed., New York, New York, USA: McGraw-Hill, Education, 2013, 736 p.
Klaas van Dokkum, Ship Knowledge Covering Ship Design, Construction and Operation: 2nd ed., Enkhuizen, The Netherlands: DOKMAR, 2005, 376 p.
V. Kasianov, Subjective Entropy of Preferences, Subjective Analysis: Monograph, Warsaw, Poland: Institute of Aviation Scientific Publications, 2013, 644 p.
A. V. Goncharenko, “A Hybrid Approach to the Optimal Aeronautical Engineering Maintenance Periodicity Determination,” Proceedings of the NAU. vol. 3(72), 2017, pp. 42–47. https://doi.org/10.18372/2306-1472.72.11980
A. V. Goncharenko, “Generalization for the Degrading State Maximal Probability in the Framework of the Hybrid-Optional Entropy Conditional Optimality Doctrine,” Problems of friction and wear. vol. 1(78), 2018, pp. 89–92.
A. V. Goncharenko, “A Diagnostics Problem of A-Posterior Probability Determination via Bayes’ Formula Obtained in the Multi-Optional Hybrid Functions Entropy Conditional Optimization Way,” Problems of friction and wear. vol. 4(77), 2017, pp. 95–99. https://doi.org/10.18372/0370-2197.4(77).12134
A. V. Goncharenko, “Measures for Estimating Transport Vessels Operators’ Subjective Preferences Uncertainty,” Scientific Bulletin of Kherson State Maritime Academy. vol. 1(6), 2012, pp. 59–69.
R. C. Hibbeler, Engineering Mechanics: Statics: 14th ed., Hoboken, New Jersey, USA: Pearson Prentice Hall, 2016, 706 p.
R. C. Hibbeler, Engineering Mechanics: Dynamics: 13th ed., Hoboken, New Jersey, USA: Pearson Prentice Hall, 2012, 746 p.
A. V. Goncharenko, “Subjective Entropy Maximum Principle for Preferences Functions of Alternatives Given in the View of Logical Conditions,” Artificial Intelligence. vol. 4(62), pp. 1 G, 4–9, 2013.
A. V. Goncharenko, “Horizontal Flight for Maximal Distance at Presence of Conflict Behavior (Control) of the Aircraft Control System Active Element,” 2013 11th International Conference “AVIA-2013” Proceedings. May 21–23, 2013, Kyiv, Ukraine, 2013, pp. 22.30–22.33.
##submission.downloads##
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).