Cтруктурно-параметричний синтез нейронних мереж прямого поширення, з нейронами типу Sigmoid Piecewise
DOI:
https://doi.org/10.18372/1990-5548.58.13508Ключові слова:
Штучні нейронні мережі, часові ряди, сигмовидна кускова функція, пряме поширенняАнотація
Розглянуто метод структурного та параметричного синтезу нейронних мереж прямого поширення, до складу яких входять нейрони типу Sigmoid Piecewise, котрі використовувалися при побудові прогнозуючої моделі. У статті описано принцип побудови нового розробленого нейрону типу Sigmoid Piecewise. Наведено результати дослідження ефективності нейронів типу Sigmoid Piecewise на реальних вибірках.
Посилання
Jürgen Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp. 85–117, January 2015. doi.org/10.1016/j.neunet.2014.09.003
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.
Olivier Delalleau, and Yoshua Bengio, “Shallow vs. deep sum-product networks,” Advances in Neural Information Processing Systems. 2011, pp. 666–674.
Stephen Boyd, and Lieven Vandenberghe, Convex optimization. Cambridge university press. 2004.
Martin Riedmiller, and Heinrich Braun, “A direct adaptive method for faster backpropagation learning: The RPROP algorithm,” IEEE International Conference on Neural Networks. 1993, pp. 586–591.
Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin, “Exploring strategies for training deep neural networks,” Journal of machine learning research, 10, no., pp.1–40, Jan. 2009.
Donald F. Specht, “A general regression neural network,” IEEE transactions on neural networks 2, no. 6, 1991, pp. 568–576.
Sung-Kwun Oh, and Witold Pedrycz, “The design of self-organizing polynomial neural networks,” Information Sciences 141, no. 3–4, pp. 237–258, 2002.
##submission.downloads##
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).