Definition and Intelligent Extraction of Texture Features of Vestibular Schwannoma Based on MRI Imaging
DOI:
https://doi.org/10.18372/1990-5548.86.20626Keywords:
vestibular schwannoma, magnetic resonance imaging, radiomics, gray level co-occurrence matrix, gray level size zone matrix, wavelet, Random Forest, PyRadiomicsAbstract
The scientific work is devoted to the development of a method for intelligent extraction of textural features of vestibular schwannomas based on magnetic resonance imaging images for predicting tumor growth. The VS-MC-RC2 dataset was analyzed (421 timepoints, 189 patients, 1990–1999). The ML dataset consists of 211 samples (74 growing, 137 stable, imbalance 1.85:1). Gray Level Co-occurrence Matrix and Gray Level Size Zone Matrix matrices, shape features, wavelet transform, and the PyRadiomics v3.0.1 library were used to extract features from T1C images (priority) and T1 images (fallback) with the following parameters: bins = 32, δ = 1 voxel, 13 3D directions. Model v2 (107 original features) achieved an AUC of 0.618. Model v3 (851 features + 8 wavelet decompositions) achieved an AUC of 0.712 (+15.2%). Validation was performed using 10-fold cross-validation with an 80/20 train/test split. Among the top 15 features, 73% were wavelet features (LHH, LLH, HLH). The best feature, original_glszm_ZoneEntropy (F = 12.67, threshold = 4.51), correlates with the Antoni A/B tissue ratio and the proliferative activity of the tumor.
References
G. Cioffi, D. N. Yeboa, M. Kelly, N. Patil, N. Manzoor, K. Greppin, K. Takaoka, K. Waite, C. Kruchko, and J. S. Barnholtz-Sloan, “Epidemiology of vestibular schwannoma in the United States, 2004-2016,” Neuro-Oncology Advances, 2020, (1):vdaa135. https://doi.org/10.1093/noajnl/vdaa135
J. P. Marinelli, C. J. Beeler, M. L. Carlson, P. Caye-Thomasen, S. A. Spear, andI. D. Erbele, “Global Incidence of Sporadic Vestibular Schwannoma: A Systematic Review,” Otolaryngology–Head and Neck Surgery. 2022, 167(2), 209–214. https://doi.org/10.1177/01945998211042006
M. L. Carlson and M. J. Link, “Vestibular Schwannomas,” New England Journal of Medicine, 2021, 384(14), 1335–1348. https://doi.org/10.1056/NEJMra2020394
K. A. Lees, N. M. Tombers, M. J. Link, C. L. W. Driscoll, B. A. Neff, J. J. Van Gompel, and M. L. Carlson, “Natural History of Sporadic Vestibular Schwannoma: A Volumetric Study of Tumor Growth,” Otolaryngology–Head and Neck Surgery, 2018, 159(3), pp. 535–542. https://doi.org/10.1177/0194599818770629
S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation,” IEEE Transactions on Medical Imaging. 2004, 23(7), pp. 903–921. https://doi.org/10.1109/TMI.2004.828354
R. J. Gillies, P. E. Kinahan, and H. Hricak. “Radiomics: Images Are More than Pictures, They Are Data,” Radiology. 2016, 278(2), pp. 563–577. https://doi.org/10.1148/radiol.2015151169
B. Varghese, L. Cai, C. Benz, D. Hwang, S. Cen, X. Lei, B. Desai, V. Duddalwar, and J. Gao, “MRI texture analysis for differentiating solitary fibrous tumor from angiomatous meningioma,” Frontiers in Radiology, 2023, 3, 1240544. https://doi.org/10.3389/fradi.2023.1240544
P. P. J. H. Langenhuizen, S. Zinger, S. Leenstra, H. P. M. Kunst, J. J. S. Mulder, P. E. J. Hanssens, P. H. N. de With, and J. B. Verheul, “Radiomics-Based Prediction of Long-term Treatment Response of Vestibular Schwannomas Following Stereotactic Radiosurgery,” Otology & Neurotology, 2020, 41(10), e1321–e1327. https://doi.org/10.1097/MAO.0000000000002886
C. Yang, D. Alvarado, P. K. Ravindran, M. E. Keizer, K. Hovinga, M. P. G. Broen, H. P. M. Kunst, and Y. Temel, “Untreated Vestibular Schwannoma: Analysis of the Determinants of Growth,” Cancers. 2024, 16(21), 3718. https://doi.org/10.3390/cancers16213718
I. Bossi Zanetti, F. Pagni, E. De Bernardi, and R. Liserre, “Radiomic Features and Predictive Models for Tumor Aggressivity in Medical Imaging: A Systematic Review and Meta-Analysis,” Journal of Personalized Medicine, 2023, 13(5), 808. https://doi.org/10.3390/jpm13050808
D. Song, C. Li, Y. Fang, J. Huang, Y. Qu, N. Jiang, and Y. Wang, “Prediction of Tumor Blood Supply in Vestibular Schwannoma Using Radiomics Machine Learning Classifiers,” Scientific Reports, 2021, 11:18872. https://doi.org/10.1038/s41598-021-97865-5
T, Gill, D. W. Hamilton, and A. D. Rajgor, “The Application of Radiomics in Vestibular Schwannomas,” J Laryngol Otol., 139(8), pp. 647–654, 2025. https://doi.org/10.1017/S0022215125000258
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, 2002, 16, pp. 321–357. https://doi.org/10.1613/jair.953
J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, 2012, 13, pp. 281–305. https://doi.org/10.5555/2503308.2188395
T. G. Dietterich, “Ensemble Methods in Machine Learning,” Multiple Classifier Systems. Lecture Notes in Computer Science, 2000, 1857, pp. 1–15. https://doi.org/10.1007/3-540-45014-9_1
J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, and V. Narayan, R. G. H. Beets-Tan, J. C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts, “Computational Radiomics System to Decode the Radiographic Phenotype,” Cancer Research, 2017, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, 12, pp. 2825–2830, 2011. https://doi.org/10.5555/1953048.2078195.
J. C. Reinhold, B. E. Dewey, A. Carass, and J. L. Prince, “Evaluating the Impact of Intensity Normalization on MR Image Synthesis,” Medical Imaging 2019: Image Processing. SPIE. 2019, 10949:109493H. https://doi.org/10.1117/12.2513089
J. Shapey, A. Kujawa, R. Dorent, G. Wang, S. Bisdas, A. Dimitriadis, D. Grishchuk, I. Paddick, N. Kitchen, R. Bradford, S. R. Saeed, S. Ourselin, and T. Vercauteren, “Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm,” Scientific Data, 2021, 8:286. https://doi.org/10.1038/s41597-021-01064-w
N. A. George-Jones, R. Chkheidze, S. Moore, J. Wang, J. B. Hunter, “MRI Texture Features are Associated with Vestibular Schwannoma Histology,” Laryngoscope, 2021, 131(6), E2000–E2006. https://doi.org/10.1002/lary.29309
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).