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Abstract—The scientific work is devoted to the development of a method for intelligent extraction of
textural features of vestibular schwannomas based on magnetic resonance imaging images for predicting
tumor growth. The VS-MC-RC?2 dataset was analyzed (421 timepoints, 189 patients, 1990—-1999). The ML
dataset consists of 211 samples (74 growing, 137 stable, imbalance 1.85:1). Gray Level Co-occurrence
Matrix and Gray Level Size Zone Matrix matrices, shape features, wavelet transform, and the
PyRadiomics v3.0.1 library were used to extract features from T1C images (priority) and Tl images
(fallback) with the following parameters: bins = 32, 6 = 1 voxel, 13 3D directions. Model v2 (107
original features) achieved an AUC of 0.618. Model v3 (851 features + 8 wavelet decompositions)
achieved an AUC of 0.712 (+15.2%). Validation was performed using 10-fold cross-validation with an
80/20 train/test split. Among the top 15 features, 73% were wavelet features (LHH, LLH, HLH). The best
feature, original_glszm_ZoneEntropy (F = 12.67, threshold = 4.51), correlates with the Antoni A/B tissue

ratio and the proliferative activity of the tumor.

Keywords—Vestibular schwannoma; magnetic resonance imaging; radiomics; gray level co-occurrence
matrix; gray level size zone matrix; wavelet; Random Forest; PyRadiomics.

I. INTRODUCTION

Vestibular schwannomas are benign neoplasms
arising from Schwann cells of the vestibulocochlear
nerve (cranial nerve VIII). These tumors account for
approximately 8—10% of all intracranial neoplasms
and about 80% of cerebellopontine angle tumors.
According to the U.S. Central Brain Tumor
Registry, the age-standardized incidence rate is 1.14
per 100,000 population [1].

The increasing diagnostic frequency of
schwannomas over recent decades is associated with
the introduction of high-resolution magnetic
resonance imaging (MRI) as the standard
neuroimaging modality. Modern MRI protocols
make it possible to detect small intracanalicular
tumors measuring 2—3 mm at early developmental
stages [2]. In parallel, there has been a shift in the
clinical paradigm toward conservative management
(the  "wait-and-scan"  strategy) for  small
asymptomatic tumors.

Despite  their  benign
schwannomas can lead to significant clinical
consequences. Typical manifestations include
progressive unilateral sensorineural hearing loss
(98% of patients), tinnitus (70%), vestibular
dysfunction, and balance disturbances (61%). In
cases of large tumors, brainstem compression and
life-threatening complications may occur [3].

nature, vestibular

Predicting the biological behavior of vestibular
schwannomas remains a critical challenge. Growth
rates range from complete stability over decades to
rapid enlargement exceeding 25 mm per year [4].
Accurate growth prediction is essential for selecting
the optimal treatment strategy.

Magnetic resonance imaging is the gold standard
for schwannoma visualization. However, manual
MRI interpretation remains a labor-intensive process
characterized by subjectivity and inter-expert
variability of 15-20% [5].

Texture analysis and radiomics represent a
promising approach for objective quantitative
characterization of medical images [10]. The
radiomics framework enables extraction of hundreds
of quantitative MRI-derived parameters describing
tumor shape, intensity, and texture [6], [7].
Langenhuizen et al. [8] demonstrated the
effectiveness of radiomic features in predicting the
long-term response of vestibular schwannomas to
stereotactic radiosurgery, achieving an AUC of 0.84.

The application of radiomics for analyzing
vestibular schwannomas is a relatively new research
area. A systematic review of radiomics applications
in otology [12] revealed a limited number of
validated prognostic models for predicting tumor
growth, underscoring the relevance of developing
robust ML-based approaches utilizing texture-
derived MRI features.
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The VS-MC-RC2 dataset [19] contains 421 MRI
scans of patients with vestibular schwannomas.
According to the results of a study involving 1009
patients, the typical symptoms are:

e Hearing loss: 85.8%
involvement 92.6%).

¢ Facial paresthesia: 48.9% (trigeminal nerve
involvement 53.5%).

e Ataxia: 44.6%.

¢ Tinnitus: 40.1%.

e Deafness: 26.3%.

¢ Facial nerve paresis: 21.1%.

Tumor sizes: T3 (30x25 mm) — 42%, T4
(44%36 mm) — 58%. Lateralization: 53% right-sided,
47% left-sided. Detailed clinical information is de-
identified in the public version of VS-MC-RC2 in
accordance with TCIA and the NHS Ethics
Committee requirements.

(cochlear nerve

II. REVIEW OF RELATED WORKS AND
CLASSIFICATION OF TEXTURAL FEATURES

Textural features are classified into four
categories [7], [16]:

o First-Order (18) — histogram-based statistics:
mean, median, variance, entropy.

e GLCM (23) - grey-level
matrix: energy, contrast, correlation.
P(i, j|d, 0) = represents the frequency of the intensity

pair (i, j) at distance d in direction .
Contrast = Z:I,Z:j(i—j)2 - P@, )),
> > i=m)(i-n,)  P))]
(6. 0,) ’

where p,, p; are the mean values and o,, o, are

Co-occurrence

Correlation =

the standard deviations.

o GLSZM (16) — grey-level size zone matrix:
short/long zone emphasis.

e Wavelet —  multiscale analysis: 8
decompositions x GLCM/GLRLM/GLSZM features.

An analysis of six peer-reviewed studies on
vestibular schwannomas (published from 2019 to
2023, total of 719 patients) revealed the distribution
of texture matrices used, as presented in Table I.

As shown in Table I, the GLCM matrix is used in
100% of vestibular schwannoma studies, making it
essential for radiomic analysis.

The baseline feature combination is GLCM +
GLRLM + First-Order, achieving an AUC of 0.88—
0.91. However, if maximum accuracy is required,
the addition of Wavelet features can further improve
performance, reaching an AUC of 0.913 [9].
A comparison of texture matrices by their frequency
of use is presented in Fig. 1.

TABLE 1. USAGE OF TEXTURE MATRICES IN VS
STUDIES

Matrix Usage % of studies
GLCM 6/6 100%
First-Order 5/6 83%
GLRLM 5/6 83%
Wavelet 4/6 67%
GLSZM 3/6 50%

Shape 1/6 17%

GLDM 1/6 17%
NGTDM 2/6 33%

Texture Matrix Performance in Schwannoma Analysis

Fig. 1. Comparison of AUC values for texture matrices in
vestibular schwannoma studies

Green bars indicate matrices with AUC > (.88
(mandatory/recommended); yellow bars represent
AUC 0.80-0.88 (acceptable); red bars correspond to
AUC < 0.80 (low effectiveness). GLCM
demonstrates the highest performance, with an AUC
of 0.99 for tumors larger than 5 cm?.

III. PROBLEM STATEMENT

Formally, the problem is defined as follows:
given a  three-dimensional =~ MRI  image

I(x,y,z)eR* and the corresponding binary tumor
segmentation mask S(x,y,z)e{0,1}, it is necessary
to find a mapping function

£ R¥ —{0,1}

that is capable of predicting the future behavior of
the tumor. The target variable y takes the value 0 for
stable tumors and 1 for growing tumors.

The criterion for classifying a tumor as growing
is a relative volume change of more than 10 percent.
This threshold corresponds to clinically significant
changes that require reconsideration of the treatment
strategy. Mathematically, this is expressed as

AV IV, > 10%,
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where AV denotes the absolute change in tumor
volume between two time points, denotes the initial
volume. Tumors with a volume change less than or
equal to 10 percent are classified as stable, since
such fluctuations may be due to natural
measurement variability, differences in segmentation
methods, or minor morphological changes without
clinical relevance.

Solving this problem is complicated by several
fundamental challenges. First, the training dataset is
characterized by a pronounced class imbalance: it
contains 137 stable tumors, which account for 64.9
percent of all samples, versus 74 growing tumors,
which represent only 35.1 percent. This yields a
class ratio of 1.85 to 1, which may lead to systematic
bias of the classifier toward predicting the majority
class. Second, the overall amount of available data is
relatively limited and consists of 211 pairs of
consecutive time points, which creates a risk of
model overfitting, especially when working with
high-dimensional feature vectors. Third, there is the
issue of optimal MRI sequence selection for
radiomics feature extraction, since different types of
weighting provide complementary information about
tumor structure but differ in their availability within
the dataset and in their degree of standardization.

The choice of a contrast-enhanced T1-weighted
sequence (T1C) as the primary modality is justified
by several factors. First, contrast enhancement
provides intense accumulation of the gadolinium-
based contrast agent Gd-DTPA in the tumor tissue,
which greatly improves visualization of tumor
boundaries and internal architecture. Second, T1C
sequences contain rich textural information that
reflects tumor microvascularity and the composition
of Antoni type A and Antoni type B tissue, which
are critical histological characteristics associated
with the biological behavior of schwannomas. Third,
T1C is the clinical gold standard for the diagnosis of
vestibular schwannomas in modern neuroradiology.

An analysis of dataset coverage by different MRI
sequences supports this choice. Among 295 time
points in the natural-history cohort, T1C sequences
are available for 267 cases, which corresponds to
90.5% coverage and makes them the priority
modality. Non-contrast T1-weighted sequences are
available for all 295 cases (100% coverage) and are
used as a fallback option when T1C is absent. T2-
weighted sequences, available for only 158 cases
(53.6% coverage), were excluded from the analysis
for several reasons: incomplete dataset coverage
would introduce systematic data gaps; high
variability of scanning protocols in the period 1990—
1999 complicates standardization; and differing

scanner parameters from various manufacturers
make it impossible to reliably normalize signal
intensities across patients. The problem of MRI
signal heterogeneity, caused by variations in
scanning protocols and scanner parameters, is well
documented in the literature and necessitates the use
of intensity normalization methods [18].

This approach to sequence selection ensures
maximal use of available data while maintaining high
quality and standardization of the input information
for the machine learning model. Prioritization of T1C
over T1 is performed automatically at the
preprocessing stage, which guarantees that the most
informative images are used for each patient.

IV. PROPOSED APPROACH

The proposed approach is based on the
extraction and analysis of radiomic textural features
from MRI images of vestibular schwannomas to
predict their growth. The method is implemented as
a multi-stage data processing pipeline that includes:

1) Extraction of radiomic features from TI1C

MRI sequences: (I - XERSSI).

2) Selection of the most informative features
using the ANOVA F-statistic: (X - X' eRSO).

3) Classification using a Random Forest (RF)
model with class balancing: (X ' )3)
4) Validation on an independent test set.

The features are organized into four categories.
Shape Features (14 features) describe geometric
properties:

e Volume — a fundamental prognostic factor;

e Sphericity (0—1) — roundness of shape; higher
values are characteristic of stable tumors.

GLCM Features (23 features) characterize
spatial relationships of intensities using the matrix
P(i, j|3, 0). Key parameters include:

e Homogeneity — local uniformity (high > 0.9
for stable tumors);

e Joint Entropy — texture complexity (low < 2.0
for stable, high > 3.0 for growing);

e Contrast — local variations (low < 50 for
stable, high > 100 for growing).

GLSZM Features (16 features) quantify zone
sizes using the matrix P(i, s). ZoneEntropy (F =
12.67, threshold = 4.51) — is the most important
feature, reflecting heterogeneity and the Antoni A/B
tissue ratio; values > 4.51 indicate Antoni B
dominance and a high risk of tumor growth.

Wavelet Features (54x8 filters) enable
multiscale analysis through LLL, LLH, LHL, LHH,
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HLL, HLH, HHL, and HHH decompositions.
Notably, 73% of the top 15 features are wavelet-
transformed, emphasizing the importance of
multiscale representation.

In the second stage, SelectKBest with ANOVA
F-statistics reduces dimensionality to & = 30
features, following the N/10 rule (211/10 = 21),
which helps prevent overfitting, where k = number
of selected features.

MSB  [Zknk(xk —x )2/(K-1)]
MSW  [Skxi(xik —¥ k)2/(N-K)]’

where MSB is the between-group variance; MSW —
is the within-group variance, K = 2 (growing,
stable); N is the total number of samples.

In the third stage, a Random Forest classifier
with 100 trees performs prediction, using the
parameter class weight="balanced' to compensate
for class imbalance. Additionally, SMOTE is
applied to the training set to generate synthetic
minority samples. Hyperparameter tuning was
performed using randomized search [14], which
provides efficiency comparable to grid search with
significantly lower computational cost.

Validation: the dataset was split 80/20 (169
train, 42 test) with stratification and evaluated using
10-fold cross-validation.

Evaluation metrics include: AUC (primary
metric), Accuracy, Precision, Recall, and Fl-score.
AUC measures the model's ability to distinguish
between classes regardless of classification
threshold, ranging from 0.5 (random classifier) to
1.0 (perfect classifier). Accuracy measures the
proportion of correctly classified samples. Precision
measures the proportion of true growing tumors
among all predicted growing tumors, reflecting the
reliability of positive predictions. Recall reflects the
proportion of correctly identified growing tumors,
indicating the model’s ability to detect clinically
significant cases. The Fl-score, the harmonic mean
of precision and recall, provides a balanced
evaluation in the presence of asymmetric error costs.

Technical  implementation:  Python  3.10,
PyRadiomics v3.0.1 [13], SimpleITK, scikit-learn
[17], imbalanced-learn.

Key innovations of the approach:

1) Multiscale wavelet analysis reveals subtle
microtextural patterns.

2) Clinically guided sequence selection (T1C

preferred with T1 fallback) ensures optimal
visualization while maximizing data usage.
3) Comprehensive class balancing through

weighting and SMOTE prevents systematic bias.

4) SelectKBest ensures interpretability by
identifying discriminative features.

5) Use of the public dataset VS-MC-RC2
guarantees reproducibility.

V. RESULTS

Using the VS-MC-RC2 dataset with 421
timepoints and 189 patients, we obtained an ML
dataset consisting of 211 samples (74 growing, 137
stable; class imbalance 1.85:1). The results of Model
v2 (Original features only) are presented in Table II.

TABLE II. MODEL V2 (107 ORIGINAL FEATURES)
k Model | AUC | Accuracy
10 LogReg | 0.598 | 60.5%
20 RF 0.605 | 62.8%
30 RF 0.618 | 65.1%

As shown in Table II, the best configuration
of Model v2 is RF, k& = 30, with an AUC of
0.618, where LogReg is a Logistic Regression.

The results of Model v3 (Original + Wavelet
features) are presented in Table III.

TABLEIII. MODEL V3 (851 FEATURES + WAVELETS)
k Model | AUC Accuracy
10 LogReg | 0.612 58.1%
20 GradB | 0.694 | 65.1%
30 RF 0.712 | 69.8%
50 LogReg | 0.602 62.8%
100 RF 0.581 69.8%

Table III shows that the best configuration of
Model v3 is RF with & = 30, achieving an AUC of
0.712 (+ 15.2% compared to v2), where GradB is a
Gradient Boosting. SelectKBest (k = 30, f classif)
identified the top 15 features, which are presented in
Table IV.

The analysis of the top 15 discriminative
radiomic features reveals a clear dominance of
wavelet-transformed descriptors, which constitute
73% (11 out of 15) of the most informative
predictors, confirming the effectiveness of machine
learning approaches for texture-based prognostic
modeling [11]. This highlights the critical
importance of multiscale texture analysis for
capturing latent patterns associated with the
biological behavior of the tumor. The LHH, LLH,
and HLH wavelet decompositions effectively
capture high-frequency image components that
reflect microstructural heterogeneity of tumor tissue
across different spatial scales.
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TABLEIV. ToP 15 FEATURES WITH CLASSIFICATION THRESHOLDS

# Feature F Min Max Threshould

1 original glszm ZoneEntropy 12,67 | 212 | 589 [3.82,4.51]

2 original_glszm_SizeZoneNonUniformityNormalized | 12.12 | 0.02 | 0.89 [0.35, 0.58]

3 wavelet-LHH ngtdm Complexity 11.76 | 8.34 | 156.2 [45.2,82.7]

4 | wavelet-LLH_glem_DiffEntropy 1138 | 1.23 |3.99 [2.15,2.89]

5 original glem_Correlation 10.75 |0.12 | 0.98 [0.48,0.72]

6 | wavelet-HLH ngtdm Complexity 10.62 | 6.78 | 142.6 | [41.3,78.9]

7 wavelet-LHH ngtdm_Contrast 10.56 | 0.00 | 045 [0.12, 0.28]

8 original gldm LargeDep 10.22 123 | 8925 [285, 512]

9 | wavelet-LLH_glem_DiffVar 10.03 | 0.89 | 823 [3.24,5.18]

10 | wavelet-HLH ngtdm Contrast 9.82 0.00 | 039 [0.10, 0.24]

11 | wavelet-HHL glem Imc2 9.81 -0.82 | 091 [-0.12, 0.35]

12 | original ngtdm_ Coarseness 9.69 0.00 |0.02 [0.008, 0.015]

13 | wavelet-HHL glem MCC 9.68 -0.92 | 0.89 [-0.15, 0,28]

14 | wavelet-LLH glem SumEntropy 9.58 145 | 423 [2.35,3.12]

15 | wavelet-LLH_glszm_SizeZone 9.55 0.02 |0.78 [0.29, 0.52]
The leading position of the ZoneEntropy most important feature,

descriptor (F-score 12.67) confirms the fundamental
role of the spatial organization of tumor tissue in

predicting growth dynamics. These textural
characteristics ~ reflect the  histopathological
heterogeneity of schwannomas, including the

proportion of Antoni A and Antoni B tissue
components and proliferative activity quantified by
the Ki-67 index [20].

~£3,P(i,j) - log,[ P(i. )],

where P(i,j) = GLSZM (i,j) /X ,GLSZM (i, j).

Values of this feature above the threshold level of
4.51 indicate a highly heterogeneous structure with a
predominance of the Antoni B component (> 60%).
This subtype is characterized by loose hypocellular
tissue and a myxomatous matrix, and is associated
with an increased risk of cystic degeneration and
more aggressive biological behavior. The second

ZoneEntropy =

SizeZoneNonUniformityNormalized (F-score 12.12,
threshold 0.58), quantitatively captures the non-
uniformity of the sizes of connected regions with
identical intensity, reflecting structural instability of
the tumor and the presence of necrotic areas or
hemorrhagic inclusions

=, (=, GLSZM(i, j))’

N? - n__zones

SZNN =

where N is the total number of voxels and n_zones is
the number of zones.

Wavelet-transformed texture complexity
descriptors ngtdm Complexity from the LHH and
HLH decompositions (thresholds 82.7 and 78.9,
respectively) capture the spatial variability of
intensity gradients and correlate with proliferative
activity within the tumor tissue.

Wavelet Decomposition:

I(x,y,z) — {LLL,LLH, LHL, LHH, HLL, HLH, HHL, HHH},

where L denotes a low-pass filter (smoothing) and H
denotes a high-pass filter (detail enhancement).

The established threshold values for each feature,
computed as the interval [Mean — 0.5xSTD, Mean +
0.5xSTD], provide clinically interpretable criteria
for three-stage risk stratification: values above the
upper boundary classify patients as a high-risk group
with recommendations for active intervention,
values below the lower boundary correspond to a

low-risk group suitable for standard observation,
whereas intermediate values indicate the need for
intensified monitoring.

VI. CONCLUSION

This study presents a comprehensive approach for
predicting vestibular schwannoma growth based on
radiomic analysis of MRI images using the VS-MC-
RC2 dataset, which contains 421 segmented
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timepoints from 189 patients. The use of standardized
preprocessing methods [15] and the PyRadiomics
library with optimized extraction parameters enabled
the computation of 851 radiomic features for each
patient, including texture descriptors derived from
GLCM, GLRLM, GLSZM, GLDM, and NGTDM
matrices, as well as wavelet-transformed features
from eight decomposition levels.

A comparative analysis of the two models
demonstrated a substantial improvement in predictive
accuracy when using the extended feature set: model
v2, based on 107 original features, achieved an AUC
of 0.618, whereas model v3, using 851 features,
reached an AUC of 0.712, representing a relative
improvement of 15.2%. This result aligns with
previous studies on radiomic machine-learning
classifiers for predicting vestibular schwannoma
characteristics [11]. The optimal configuration
incorporated a Random Forest classifier with 30
features selected using the SelectKBest method,
providing a balance between accuracy and
generalization capability.

Analysis of the most informative features revealed
the leading role of the ZoneEntropy descriptor from
the GLSZM matrix, which showed the highest F-
score (12.67) and a threshold level of 4.51 for
discriminating tumors with a high risk of growth. This
metric reflects tumor structural heterogeneity and
correlates with the predominance of Antoni B tissue,
consistent with evidence linking MRI texture features
to histopathological characteristics of vestibular
schwannomas [20], and holds important clinical value
for patient stratification. ~Wavelet-transformed
features account for 73% of the top-15 predictors,
underscoring the critical importance of multiscale
texture analysis for capturing latent patterns of tumor
biological behavior.

The proposed methodology for selecting MRI
sequences, prioritizing T1C images, ensured optimal
visualization of tumor boundaries in 90.5% of cases,
while systematic exclusion of T2 sequences
contributed to improved standardization of results.
Comparison with existing studies demonstrates the
competitiveness of the proposed approach, although
the relative difference of 22% from the benchmark
AUC of 0913 indicates potential for further
improvement through data augmentation and
ensemble techniques.

The clinical relevance of the obtained results lies
in the ability to objectively stratify patients into risk
groups to guide optimal management strategies.
Future work includes validation on multicenter
cohorts, integration of clinical parameters, and the

development of interpretable models to enhance
clinician trust.
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ocHoBi MPT-300paxkeHs [uIsl IPOrHO3yBaHHS pocTy myxJymHHU. [IpoananizoBano patacer VS-MC-RC2 (421 timepoint,
189 nauienris, 1990-1999). ML naracert: 211 3paskiB (74 3pocratoui, 137 crabinbhi, aucbananc 1.85:1). Bukopucrano
MaTpHLIO CIiB3yCTPiYaJbHOCTI PIBHIB Ciporo, mMarpuifo 30H piBHIB ciporo, Shape Features, Wavelet Transform,



V.M. Sineglazov, M.V. Shevchenko
Definition and Intelligent Extraction of Texture Features of Vestibular Schwannoma Based on MRI Imaging 79
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KOPEJIIOE 3 CHiBBiJHOIICHHAM Antoni A/B TkaHuH i nposidepaTHBHOIO aKTHBHICTIO IyXJIHHU.

KarouoBi cioBa: BectuOyisipHa  IIBaHHOMa;  MAarHiTHO-pe3OHaHCHa  ToMmorpadis; radiomics;  Marpuus
CHIB3YCTPIYaJILHOCTI PiBHIB CIpOro; MaTpHL 30H piBHIB ciporo; BelBieT; Random Forest; PyRadiomics.

Cunernazos Bikrop Muxaiiaosuu. ORCID 0000-0002-3297-9060. okrop TexHiunux Hayk. IIpodecop. 3aBizyBau
Kagenpy aBialliifHUX KOMIT IOTEPHO-IHTETPOBAHUX KOMILIEKCIB.

®dakynpTeT aepoHaBiramii, €JIEeKTPOHIKM 1 TesekoMyHikauii, JlepxaBuuii yHiBepcurer «KuiBchbkuii aBiaumiiHui
iHcTuty™, KriiB, Ykpaina.

Ocsirta: KuiBchkuii monitexniunuit inctutyT, Kuis, Ykpaina, (1973).

HampsiMm HaykoBOi [isSTbHOCTI: aepoOHAaBirallis, yHpaBliHHS TOBITPSIHHM pPYXOM, iAeHTH(DIKAIis CKIAQIHUX CHCTEM,
BITPOCHEPTETUYHI YCTAHOBKH, IITYYHUH 1HTEIEKT.

Kinpkicte my6mikariii: 6inbire 850 HaykoBUX poOiT.

E-mail: svm@nau.edu.ua

IleBuenxo Makcum BasepiiioBud. AcripaHT.

Kagenpa aBiamiiiHUX KOMI'IOTEpHO-IHTETPOBAaHMX KOMIUIEKCiB, DakyibTeT aepoHaBiramii, eJIEKTPOHIKH 1
TeJIeKOMyHiKalii, Jlep>xaBHuii yHiBepcuTeT «KuiBCbkHi aBianiiHuii iHcTUTyT», KHiB, YKpaina.

Ocsira: HarionansHuit aBianiinuii yHiBepcurer, Kuis, Ykpaina, (2020).

HanpsiMm HaykoBoi #istiIbHOCTI: i1eHTH(]IKALISA CKIaJHUX CHCTEM.

KinpkicTs myOmikariii: 4.

E-mail: maksymshevchenkoO1@gmail.com



