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Abstract—The scientific work is devoted to the development of a method for intelligent extraction of 

textural features of vestibular schwannomas based on magnetic resonance imaging images for predicting 

tumor growth. The VS-MC-RC2 dataset was analyzed (421 timepoints, 189 patients, 1990–1999). The ML 

dataset consists of 211 samples (74 growing, 137 stable, imbalance 1.85:1). Gray Level Co-occurrence 

Matrix and Gray Level Size Zone Matrix matrices, shape features, wavelet transform, and the 

PyRadiomics v3.0.1 library were used to extract features from T1C images (priority) and T1 images 

(fallback) with the following parameters: bins = 32, δ = 1 voxel, 13 3D directions. Model v2 (107 

original features) achieved an AUC of 0.618. Model v3 (851 features + 8 wavelet decompositions) 

achieved an AUC of 0.712 (+15.2%). Validation was performed using 10-fold cross-validation with an 

80/20 train/test split. Among the top 15 features, 73% were wavelet features (LHH, LLH, HLH). The best 

feature, original_glszm_ZoneEntropy (F = 12.67, threshold = 4.51), correlates with the Antoni A/B tissue 

ratio and the proliferative activity of the tumor. 

Keywords—Vestibular schwannoma; magnetic resonance imaging; radiomics; gray level co-occurrence 

matrix; gray level size zone matrix; wavelet; Random Forest; PyRadiomics. 

I. INTRODUCTION 

Vestibular schwannomas are benign neoplasms 

arising from Schwann cells of the vestibulocochlear 

nerve (cranial nerve VIII). These tumors account for 

approximately 8–10% of all intracranial neoplasms 

and about 80% of cerebellopontine angle tumors. 

According to the U.S. Central Brain Tumor 

Registry, the age-standardized incidence rate is 1.14 

per 100,000 population [1]. 

The increasing diagnostic frequency of 

schwannomas over recent decades is associated with 

the introduction of high-resolution magnetic 

resonance imaging (MRI) as the standard 

neuroimaging modality. Modern MRI protocols 

make it possible to detect small intracanalicular 

tumors measuring 2–3 mm at early developmental 

stages [2]. In parallel, there has been a shift in the 

clinical paradigm toward conservative management 

(the "wait-and-scan" strategy) for small 

asymptomatic tumors. 

Despite their benign nature, vestibular 

schwannomas can lead to significant clinical 

consequences. Typical manifestations include 

progressive unilateral sensorineural hearing loss 

(98% of patients), tinnitus (70%), vestibular 

dysfunction, and balance disturbances (61%). In 

cases of large tumors, brainstem compression and 

life-threatening complications may occur [3]. 

Predicting the biological behavior of vestibular 
schwannomas remains a critical challenge. Growth 
rates range from complete stability over decades to 
rapid enlargement exceeding 25 mm per year [4]. 
Accurate growth prediction is essential for selecting 
the optimal treatment strategy. 

Magnetic resonance imaging is the gold standard 
for schwannoma visualization. However, manual 
MRI interpretation remains a labor-intensive process 
characterized by subjectivity and inter-expert 
variability of 15–20% [5]. 

Texture analysis and radiomics represent a 
promising approach for objective quantitative 
characterization of medical images [10]. The 
radiomics framework enables extraction of hundreds 
of quantitative MRI-derived parameters describing 
tumor shape, intensity, and texture [6], [7]. 
Langenhuizen et al. [8] demonstrated the 
effectiveness of radiomic features in predicting the 
long-term response of vestibular schwannomas to 
stereotactic radiosurgery, achieving an AUC of 0.84. 

The application of radiomics for analyzing 

vestibular schwannomas is a relatively new research 

area. A systematic review of radiomics applications 

in otology [12] revealed a limited number of 

validated prognostic models for predicting tumor 

growth, underscoring the relevance of developing 

robust ML-based approaches utilizing texture-

derived MRI features. 
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The VS-MC-RC2 dataset [19] contains 421 MRI 
scans of patients with vestibular schwannomas. 
According to the results of a study involving 1009 
patients, the typical symptoms are: 

 Hearing loss: 85.8% (cochlear nerv
involvement 92.6%). 

 Facial paresthesia: 48.9% (trigeminal nerve 
involvement 53.5%). 

 Ataxia: 44.6%. 

 Tinnitus: 40.1%. 

 Deafness: 26.3%. 

 Facial nerve paresis: 21.1%.
Tumor sizes: T3 (30×25 mm) 

(44×36 mm) – 58%. Lateralization: 53% right
47% left-sided. Detailed clinical information is de
identified in the public version of VS
accordance with TCIA and the NHS Ethics 
Committee requirements. 

II. REVIEW OF RELATED WORKS

CLASSIFICATION OF TEXTURAL 

Textural features are classifie
categories [7], [16]: 

 First-Order (18) – histogram
mean, median, variance, entropy. 

 GLCM (23) – grey-level co
matrix: energy, contrast, correlation.
P(i, j|d, θ) = represents the frequency of the intensity 

pair (i, j) at distance d in direction
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where 
i , j  are the mean values and

the standard deviations. 

 GLSZM (16) – grey-level size zone matrix: 
short/long zone emphasis. 

 Wavelet – multiscale analysis: 8 
decompositions × GLCM/GLRLM/GLSZM features

An analysis of six peer-reviewed studies on 
vestibular schwannomas (published from
2023, total of 719 patients) revealed the distribution 
of texture matrices used, as presented in Table 

As shown in Table I, the GLCM matrix is used in 
100% of vestibular schwannoma studies, making it 
essential for radiomic analysis. 

The baseline feature combination is GLCM
GLRLM + First-Order, achieving an AUC of 0.88
0.91. However, if maximum accuracy is required, 
the addition of Wavelet features can further improve 
performance, reaching an AUC of 0.913 [9].
A comparison of texture matrices by their frequency 
of use is presented in Fig. 1. 
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performance, reaching an AUC of 0.913 [9]. 

y their frequency 

TABLE I. USAGE OF TEXTURE 

STUDIES

Matrix Usage 

GLCM 6/6 

First-Order 5/6 

GLRLM 5/6 

Wavelet 4/6 

GLSZM 3/6 

Shape 1/6 

GLDM 1/6 

NGTDM 2/6 
 

Fig. 1. Comparison of AUC values for texture matrices in 

vestibular schwannoma studies

Green bars indicate matrices with AUC > 0.88 

(mandatory/recommended); yellow bars represent 

AUC 0.80–0.88 (acceptable); red bars correspond to 

AUC < 0.80 (low effectivene

demonstrates the highest performance, with an AUC 

of 0.99 for tumors larger than 5 cm³.

III. PROBLEM S

Formally, the problem is defined as follows: 

given a three-dimensional MRI image

 , , ³I x y z ℝ  and the corresponding binary tum

segmentation mask  , , 0,1S x y z

to find a mapping function  

851:  0,1f ℝ

that is capable of predicting the future behavior of 

the tumor. The target variable 

stable tumors and 1 for grow

The criterion for classifying a tumor as growing 

is a relative volume change of more than 10 percent. 

This threshold corresponds to clinically significant 

changes that require reconsideration of the treatment 

strategy. Mathematically, this is 

0/   10%,V V 

f Vestibular Schwannoma Based on MRI Imaging        73 

EXTURE MATRICES IN VS 

TUDIES 

 % of studies 

100% 

83% 

83% 

67% 

50% 

17% 

17% 

33% 

 

Comparison of AUC values for texture matrices in 

vestibular schwannoma studies 

Green bars indicate matrices with AUC > 0.88 

(mandatory/recommended); yellow bars represent 

0.88 (acceptable); red bars correspond to 

AUC < 0.80 (low effectiveness). GLCM 

demonstrates the highest performance, with an AUC 

of 0.99 for tumors larger than 5 cm³. 

STATEMENT 

Formally, the problem is defined as follows: 

dimensional MRI image 

and the corresponding binary tumor 

  , , 0,1S x y z  , it is necessary 

 :  0,1  

that is capable of predicting the future behavior of 

variable y takes the value 0 for 

stable tumors and 1 for growing tumors.  

The criterion for classifying a tumor as growing 

is a relative volume change of more than 10 percent. 

This threshold corresponds to clinically significant 

changes that require reconsideration of the treatment 

strategy. Mathematically, this is expressed as  

/   10%,   
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where ΔV denotes the absolute change in tumor 

volume between two time points, denotes the initial 

volume. Tumors with a volume change less than or 

equal to 10 percent are classified as stable, since 

such fluctuations may be due to natural 

measurement variability, differences in segmentation 

methods, or minor morphological changes without 

clinical relevance. 

Solving this problem is complicated by several 

fundamental challenges. First, the training dataset is 

characterized by a pronounced class imbalance: it 

contains 137 stable tumors, which account for 64.9 

percent of all samples, versus 74 growing tumors, 

which represent only 35.1 percent. This yields a 

class ratio of 1.85 to 1, which may lead to systematic 

bias of the classifier toward predicting the majority 

class. Second, the overall amount of available data is 

relatively limited and consists of 211 pairs of 

consecutive time points, which creates a risk of 

model overfitting, especially when working with 

high-dimensional feature vectors. Third, there is the 

issue of optimal MRI sequence selection for 

radiomics feature extraction, since different types of 

weighting provide complementary information about 

tumor structure but differ in their availability within 

the dataset and in their degree of standardization. 

The choice of a contrast-enhanced T1-weighted 

sequence (T1C) as the primary modality is justified 

by several factors. First, contrast enhancement 

provides intense accumulation of the gadolinium-

based contrast agent Gd-DTPA in the tumor tissue, 

which greatly improves visualization of tumor 

boundaries and internal architecture. Second, T1C 

sequences contain rich textural information that 

reflects tumor microvascularity and the composition 

of Antoni type A and Antoni type B tissue, which 

are critical histological characteristics associated 

with the biological behavior of schwannomas. Third, 

T1C is the clinical gold standard for the diagnosis of 

vestibular schwannomas in modern neuroradiology.  

An analysis of dataset coverage by different MRI 

sequences supports this choice. Among 295 time 

points in the natural-history cohort, T1C sequences 

are available for 267 cases, which corresponds to 

90.5% coverage and makes them the priority 

modality. Non-contrast T1-weighted sequences are 

available for all 295 cases (100% coverage) and are 

used as a fallback option when T1C is absent. T2-

weighted sequences, available for only 158 cases 

(53.6% coverage), were excluded from the analysis 

for several reasons: incomplete dataset coverage 

would introduce systematic data gaps; high 

variability of scanning protocols in the period 1990–

1999 complicates standardization; and differing 

scanner parameters from various manufacturers 

make it impossible to reliably normalize signal 

intensities across patients. The problem of MRI 

signal heterogeneity, caused by variations in 

scanning protocols and scanner parameters, is well 

documented in the literature and necessitates the use 

of intensity normalization methods [18]. 

This approach to sequence selection ensures 

maximal use of available data while maintaining high 

quality and standardization of the input information 

for the machine learning model. Prioritization of T1C 

over T1 is performed automatically at the 

preprocessing stage, which guarantees that the most 

informative images are used for each patient. 

IV. PROPOSED APPROACH 

The proposed approach is based on the 

extraction and analysis of radiomic textural features 

from MRI images of vestibular schwannomas to 

predict their growth. The method is implemented as 

a multi-stage data processing pipeline that includes: 

1) Extraction of radiomic features from T1C 

MRI sequences:  851  .I X ℝ  

2) Selection of the most informative features 

using the ANOVA F-statistic:  30  ' .X X ℝ  

3) Classification using a Random Forest (RF) 

model with class balancing:  ˆ'   .X y  

4) Validation on an independent test set. 

The features are organized into four categories. 

Shape Features (14 features) describe geometric 

properties: 

 Volume – a fundamental prognostic factor;  

 Sphericity (0–1) – roundness of shape; higher 

values are characteristic of stable tumors.  

GLCM Features (23 features) characterize 

spatial relationships of intensities using the matrix 

P(i, j|δ, θ). Key parameters include:  

 Homogeneity – local uniformity (high > 0.9 

for stable tumors);  

 Joint Entropy – texture complexity (low < 2.0 

for stable, high > 3.0 for growing);  

 Contrast – local variations (low < 50 for 

stable, high > 100 for growing).  

GLSZM Features (16 features) quantify zone 

sizes using the matrix P(i, s). ZoneEntropy (F = 

12.67, threshold = 4.51) – is the most important 

feature, reflecting heterogeneity and the Antoni A/B 

tissue ratio; values > 4.51 indicate Antoni B 

dominance and a high risk of tumor growth.  

Wavelet Features (54×8 filters) enable 

multiscale analysis through LLL, LLH, LHL, LHH, 
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HLL, HLH, HHL, and HHH decompositions. 

Notably, 73% of the top 15 features are wavelet-

transformed, emphasizing the importance of 

multiscale representation. 

In the second stage, SelectKBest with ANOVA 

F-statistics reduces dimensionality to k = 30 

features, following the N/10 rule (211/10 ≈ 21), 

which helps prevent overfitting, where k = number 

of selected features.  

   
   

     2 / 1MSB
   

MSW  /
,

 2

k nk x k x K
F

k i xik x k N K

     
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where MSB is the between-group variance; MSW – 

is the within-group variance, K = 2 (growing, 

stable); N is the total number of samples. 

In the third stage, a Random Forest classifier 

with 100 trees performs prediction, using the 

parameter class_weight='balanced' to compensate 

for class imbalance. Additionally, SMOTE is 

applied to the training set to generate synthetic 

minority samples. Hyperparameter tuning was 

performed using randomized search [14], which 

provides efficiency comparable to grid search with 

significantly lower computational cost. 

Validation: the dataset was split 80/20 (169 

train, 42 test) with stratification and evaluated using 

10-fold cross-validation. 

Evaluation metrics include: AUC (primary 

metric), Accuracy, Precision, Recall, and F1-score. 

AUC measures the model's ability to distinguish 

between classes regardless of classification 

threshold, ranging from 0.5 (random classifier) to 

1.0 (perfect classifier). Accuracy measures the 

proportion of correctly classified samples. Precision 

measures the proportion of true growing tumors 

among all predicted growing tumors, reflecting the 

reliability of positive predictions. Recall reflects the 

proportion of correctly identified growing tumors, 

indicating the model’s ability to detect clinically 

significant cases. The F1-score, the harmonic mean 

of precision and recall, provides a balanced 

evaluation in the presence of asymmetric error costs. 

Technical implementation: Python 3.10, 

PyRadiomics v3.0.1 [13], SimpleITK, scikit-learn 

[17], imbalanced-learn.  

Key innovations of the approach:  

1) Multiscale wavelet analysis reveals subtle 

microtextural patterns. 

2) Clinically guided sequence selection (T1C 

preferred with T1 fallback) ensures optimal 

visualization while maximizing data usage. 

3) Comprehensive class balancing through 

weighting and SMOTE prevents systematic bias. 

4) SelectKBest ensures interpretability by 

identifying discriminative features. 

5) Use of the public dataset VS-MC-RC2 

guarantees reproducibility. 

V. RESULTS 

Using the VS-MC-RC2 dataset with 421 

timepoints and 189 patients, we obtained an ML 

dataset consisting of 211 samples (74 growing, 137 

stable; class imbalance 1.85:1). The results of Model 

v2 (Original features only) are presented in Table II. 

TABLE II. MODEL V2 (107 ORIGINAL FEATURES)  

k Model AUC Accuracy 

10 LogReg 0.598 60.5% 

20 RF 0.605 62.8% 

30 RF 0.618 65.1% 

As shown in Table II, the best configuration 

of Model v2 is RF, k = 30, with an AUC of 

0.618, where LogReg is a Logistic Regression. 

The results of Model v3 (Original + Wavelet 

features) are presented in Table ІІІ. 

TABLE III. MODEL V3 (851 FEATURES + WAVELETS)  

k Model AUC Accuracy 

10 LogReg 0.612 58.1% 

20 GradB 0.694 65.1% 

30 RF 0.712 69.8% 

50 LogReg 0.602 62.8% 

100 RF 0.581 69.8% 

Table III shows that the best configuration of 

Model v3 is RF with k = 30, achieving an AUC of 

0.712 (+ 15.2% compared to v2), where GradB is a 

Gradient Boosting. SelectKBest (k = 30, f_classif) 

identified the top 15 features, which are presented in 

Table IV. 

The analysis of the top 15 discriminative 

radiomic features reveals a clear dominance of 

wavelet-transformed descriptors, which constitute 

73% (11 out of 15) of the most informative 

predictors, confirming the effectiveness of machine 

learning approaches for texture-based prognostic 

modeling [11]. This highlights the critical 

importance of multiscale texture analysis for 

capturing latent patterns associated with the 

biological behavior of the tumor. The LHH, LLH, 

and HLH wavelet decompositions effectively 

capture high-frequency image components that 

reflect microstructural heterogeneity of tumor tissue 

across different spatial scales. 
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TABLE IV. TOP 15 FEATURES WITH CLASSIFICATION THRESHOLDS  

# Feature F Min Max Threshould 

1 original_glszm_ZoneEntropy 12.67 2.12 5.89 [3.82, 4.51] 

2 original_glszm_SizeZoneNonUniformityNormalized 12.12 0.02 0.89 [0.35, 0.58] 

3 wavelet-LHH_ngtdm_Complexity 11.76 8.34 156.2 [45.2, 82.7] 

4 wavelet-LLH_glcm_DiffEntropy 11.38 1.23 3.99 [2.15, 2.89] 

5 original_glcm_Correlation 10.75 0.12 0.98 [0.48, 0.72] 

6 wavelet-HLH_ngtdm_Complexity 10.62 6.78 142.6 [41.3, 78.9] 

7 wavelet-LHH_ngtdm_Contrast 10.56 0.00 0.45 [0.12, 0.28] 

8 original_gldm_LargeDep 10.22 12.3 892.5 [285, 512] 

9 wavelet-LLH_glcm_DiffVar 10.03 0.89 8.23 [3.24, 5.18] 

10 wavelet-HLH_ngtdm_Contrast 9.82 0.00 0.39 [0.10, 0.24] 

11 wavelet-HHL_glcm_Imc2 9.81 -0.82 0.91 [-0.12, 0.35] 

12 original_ngtdm_Coarseness 9.69 0.00 0.02 [0.008, 0.015] 

13 wavelet-HHL_glcm_MCC 9.68 -0.92 0.89 [-0.15, 0,28] 

14 wavelet-LLH_glcm_SumEntropy 9.58 1.45 4.23 [2.35, 3.12] 

15 wavelet-LLH_glszm_SizeZone 9.55 0.02 0.78 [0.29, 0.52] 

 

The leading position of the ZoneEntropy 

descriptor (F-score 12.67) confirms the fundamental 

role of the spatial organization of tumor tissue in 

predicting growth dynamics. These textural 

characteristics reflect the histopathological 

heterogeneity of schwannomas, including the 

proportion of Antoni A and Antoni B tissue 

components and proliferative activity quantified by 

the Ki-67 index [20]. 

   2 ,ZoneEntropy   ,  · log ,i j P i j P i j       

where      ,   ,  / , .i jP i j GLSZM i j GLSZM i j    

Values of this feature above the threshold level of 

4.51 indicate a highly heterogeneous structure with a 

predominance of the Antoni B component (> 60%). 

This subtype is characterized by loose hypocellular 

tissue and a myxomatous matrix, and is associated 

with an increased risk of cystic degeneration and 

more aggressive biological behavior. The second 

most important feature, 

SizeZoneNonUniformityNormalized (F-score 12.12, 

threshold 0.58), quantitatively captures the non-

uniformity of the sizes of connected regions with 

identical intensity, reflecting structural instability of 

the tumor and the presence of necrotic areas or 

hemorrhagic inclusions 

  2

  GLSZM ,
SZNN  

² · _ zones
,

j i i j

N n

 
  

where N is the total number of voxels and n_zones is 

the number of zones. 

Wavelet-transformed texture complexity 

descriptors ngtdm_Complexity from the LHH and 

HLH decompositions (thresholds 82.7 and 78.9, 

respectively) capture the spatial variability of 

intensity gradients and correlate with proliferative 

activity within the tumor tissue. 

Wavelet Decomposition: 

   , ,   LLL, LLH, LHL, LHH, HLL, HLH, HHL, H ,HHI x y z   

where L denotes a low-pass filter (smoothing) and H 

denotes a high-pass filter (detail enhancement). 

The established threshold values for each feature, 

computed as the interval [Mean – 0.5×STD, Mean + 

0.5×STD], provide clinically interpretable criteria 

for three-stage risk stratification: values above the 

upper boundary classify patients as a high-risk group 

with recommendations for active intervention, 

values below the lower boundary correspond to a 

low-risk group suitable for standard observation, 

whereas intermediate values indicate the need for 

intensified monitoring. 

VI. CONCLUSION 

This study presents a comprehensive approach for 

predicting vestibular schwannoma growth based on 

radiomic analysis of MRI images using the VS-MC-

RC2 dataset, which contains 421 segmented 



V.M. Sineglazov, M.V. Shevchenko 

Definition and Intelligent Extraction of Texture Features of Vestibular Schwannoma Based on MRI Imaging        77 

 

 

timepoints from 189 patients. The use of standardized 

preprocessing methods [15] and the PyRadiomics 

library with optimized extraction parameters enabled 

the computation of 851 radiomic features for each 

patient, including texture descriptors derived from 

GLCM, GLRLM, GLSZM, GLDM, and NGTDM 

matrices, as well as wavelet-transformed features 

from eight decomposition levels. 

A comparative analysis of the two models 

demonstrated a substantial improvement in predictive 

accuracy when using the extended feature set: model 

v2, based on 107 original features, achieved an AUC 

of 0.618, whereas model v3, using 851 features, 

reached an AUC of 0.712, representing a relative 

improvement of 15.2%. This result aligns with 

previous studies on radiomic machine-learning 

classifiers for predicting vestibular schwannoma 

characteristics [11]. The optimal configuration 

incorporated a Random Forest classifier with 30 

features selected using the SelectKBest method, 

providing a balance between accuracy and 

generalization capability. 

Analysis of the most informative features revealed 

the leading role of the ZoneEntropy descriptor from 

the GLSZM matrix, which showed the highest F-

score (12.67) and a threshold level of 4.51 for 

discriminating tumors with a high risk of growth. This 

metric reflects tumor structural heterogeneity and 

correlates with the predominance of Antoni B tissue, 

consistent with evidence linking MRI texture features 

to histopathological characteristics of vestibular 

schwannomas [20], and holds important clinical value 

for patient stratification. Wavelet-transformed 

features account for 73% of the top-15 predictors, 

underscoring the critical importance of multiscale 

texture analysis for capturing latent patterns of tumor 

biological behavior. 

The proposed methodology for selecting MRI 

sequences, prioritizing T1C images, ensured optimal 

visualization of tumor boundaries in 90.5% of cases, 

while systematic exclusion of T2 sequences 

contributed to improved standardization of results. 

Comparison with existing studies demonstrates the 

competitiveness of the proposed approach, although 

the relative difference of 22% from the benchmark 

AUC of 0.913 indicates potential for further 

improvement through data augmentation and 

ensemble techniques. 

The clinical relevance of the obtained results lies 

in the ability to objectively stratify patients into risk 

groups to guide optimal management strategies. 

Future work includes validation on multicenter 

cohorts, integration of clinical parameters, and the 

development of interpretable models to enhance 

clinician trust. 
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В. М. Синєглазов, Шевченко М. В. Визначення та інтелектуальне вилучення текстурних ознак 

вестибулярної шванноми на основі використання МРТ зображень 

Роботу присвячено розробці метода інтелектуального вилучення текстурних ознак вестибулярних шванном на 

основі МРТ-зображень для прогнозування росту пухлини. Проаналізовано датасет VS-MC-RC2 (421 timepoint, 

189 пацієнтів, 1990-1999). ML датасет: 211 зразків (74 зростаючі, 137 стабільні, дисбаланс 1.85:1). Використано 

матрицю співзустрічальності рівнів сірого, матрицю зон рівнів сірого, Shape Features, Wavelet Transform, 
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бібліотеку PyRadiomics v3.0.1 для вилучення ознак з T1C-зображень (пріоритет) та T1 (резерв) з параметрами: 

bins = 32, δ = 1 voxel, 13 3D напрямків. Model v2 (107 оригінальних ознак): AUC 0.618. Model v3 (851 ознак + 8 

вейвлет-декомпозицій): AUC 0.712 (+15.2%). Валідація: 10-fold CV, навчальна/тестова 80/20. Топ-15 ознак: 73% 

wavelet features (LHH, LLH, HLH). Найкраща: original_glszm_ZoneEntropy (F = 12.67, threshold = 4.51), що 

корелює з співвідношенням Antoni A/B тканин і проліферативною активністю пухлини. 

Ключові слова: вестибулярна шваннома; магнітно-резонансна томографія; radiomics; матриця 

співзустрічальності рівнів сірого; матриця зон рівнів сірого; вейвлет; Random Forest; PyRadiomics. 
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