Extension of the field, generates a primitive space matrix Galois
DOI:
https://doi.org/10.18372/2410-7840.17.9785Keywords:
irreducible and primitive polynomials, basic and conjugated matrix Galois and Fibonacci, spatial matrix, extended Galois fieldAbstract
The paper deals with the formation of extended fields, elements of which are Galois matrix representing the spatial non-degenerate matrix synthesized by forming elements – one-dimensional vectors and irreducible polynomials of degree by the method of successive rows of filling. The essence of the method of successive filling option for two-dimensional matrix is reduced to the placement of elements in the lower row of the matrix in which the following lines (bottom to top) fit shifted by one bit to the left vectors lying in the previous line. In the case where a shift length of the vector is greater than the order of the matrix , this vector provides the residue modulo . Introduced Galois conjugate matrix and unambiguously associated right-hand base and conjugate transpose matrix Fibonacci. Discussed the possibility of building advanced fields on the basis of spatial matrices formed by two-dimensional matrix Galois.References
Лидл Р. Конечные поля. Монография в 2-х томах. / Р. Лидл, Г. Нидеррайтер. Т. 1. – М.: Мир, 1988. – 432 с.
Постников М. М. Теория Галуа. / М. М. Постников. – Физматгиз, 1963. – 218 с.
Волкович С. Л. Вступ до алгебраїчної теорії пере-шкодостійкого кодування / С. Л. Волкович, В. О. Геранін, Т. В. Мовчан, Л. Д. Пісаренко. – Київ, ВПФ УкрІНТЕІ, 2002. – 236 с.
Соколов Н. П. Пространственные матрицы и их приложения. / Н. П. Соколов. – М.: ГИФМЛ, 1960. – 300 с.
Соколов Н. П. Введение в теорию многомерных матриц. / Н. П. Соколов. – К.: Наукова думка, 1972. – 176 с.
Поточные шифры. Результаты зарубежной открытой криптологии. – М., 1997. / [Электронный ресурс]. – Режим доступа: http//www/ssl/stu/neva/ru/psw/crypto/potok/st r_ciph.htm
Асосков А. В. Поточные шифры. / А. В. Асосков, М. А. Иванов, А. А. Мирский и др. – М.: КУДИЦ-ОБРАЗ, 2003. – 336 с.
Иванов М. А. Теория, применение и оценка качества генераторов псевдослучайных последовательностей. / М. А. Иванов, И. В. Чугунков. – М.: КУ-ДИЦ-ОБРАЗ, 2003. – 240 с.
Муллажонов Р. В. Обобщенное транспонирование матриц и структуры линейных крупномасштабных систем. / Р. В. Муллажонов // Доповіді НАНУ, 2009, № 10. – С. 27-35.
Энциклопедия математики. Том 5. - M .: Изд-во "Советская энциклопедия", 1985. – 623 с.
Блейхут Р. Теория и практика кодов, контролирую-щих ошибки / Р. Блейхут. – М.: Мир, 1986. – 576 с.
Белецкий А. Я. Обобщенные коды Грея. Научная монография. / А. Я. Белецкий. – Palmarium Aca-demic Publishing, Germany, 2014. – 208 с. ISBN 978-3-639-68389-9
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).