Criptografy applications of primitive matrices Galois and Fibonacci
DOI:
https://doi.org/10.18372/2410-7840.15.4777Keywords:
irreducible polynomials, primitive ma-trices, primitive elements of the field GaloisAbstract
Formation of pseudo-random sequences of binary numbers is the actual problem being solved in cryptography. The most common method of generating pseudo-random sequences is based on linear shift registers of maximal order linear feedback is uniquely described by the classical Galois and Fibonacci matrices. The paper deals with the synthesis of generalized primitive matrices Galois and Fibonacci (and their dual versions) of any order n over Galois prime field of characteristic p. Synthesis of matrices based on the use of irreducible polynomials of degree n fn characteristic p and primitive elements of the extended Galois field generated by the polynomial fn. We discuss the prospects of using such matrices in the construction of pseudorandom sequence of generalized p-ary numbers. Developed conversion operators of any generalized matrix of all the others. Proposed stylized representation of feedbacks in the LSR-generators of pseudo-random sequences.
References
Поточные шифры. Результаты зарубежной открытой криптологии / [Электронный ресурс]. – Режим доступа: http//www.ssl.stu.neva.ru /psw/ crypto.html
Лидл Р. Конечные поля /Р. Лидл, Г. Нидер-Райтер. Т. 1. – М.: Мир, 1988. – 432 с.
Иванов М.А. Теория, применение и оценка качества генераторов псевдослучайных последовательностей. / М.А. Иванов, И.В. Чугунков – М.: КУДИЦ-ОБРАЗ, 2003. – 240 с.
Гантмахер Ф. Р. Теория матриц. / Ф.Р. Гантмахер — М.: Физматлит, 2004. — 560 с.
Белецкий А.Я. Преобразования Грея. Монография в 2-х томах. / А.Я. Белецкий, А.А. Белецкий, Е.А. Белецкий. Т. 1. Основы теории – К.: Кн. Изд-во НАУ, 2007. – 412 с.
Белецкий А.Я. Синтез примитивных матриц в конечных полях Галуа и их применение. / А.Я. Белецкий, А.А. Белецкий // Информационные технологии в образовании. – Херсон: ХГУ, 2012. – С. 23–43.
Белецкий А.Я. Примитивные матрицы над простыми полями Галуа. /А.Я. Белецкий // Системи обробки інформації. – Х. ХУПС. – 2012, № 3. – С. 218-219.
Stream ciphers. The results of the open foreign cryptology / [electronic resource]. - Mode of access: http//www.ssl.stu.neva.ru /psw/ crypto.html.
R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge university press, 1994, 416 p.
M.A. Ivanov, I.V. Chugunkov The the theory application and evaluation a generator for pseudo sequences. M.: Cudits-Obraz, 2003, 240 p.
F.R. Gantmaher Matrix Theory., М.: Fizmathlit, 2004, 560 p.
A.Ja. Beletsky, A.A. Beletsky, E.A. Beletsky. Transformations Gray. Monography in 2 vols. V. Fundamentals of the theory - Kiev: Book publisher NAU, 2007, 412 p.
A.Ja. Beletsky, A.A. Beletsky. Synthesis of primitive matrices of finite Galois fields and their application. Information technology in education, Kherson: KSU, 2012, pp. 23-43.
A.Ja. Beletsky. Primitive matrices over prime Galois fields. // The information processing system. – Khar-kov. HUVS, 2012, № 3, pp. 218-219.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).