Synthesis of robust discrete guidance system for solid body with incomplete state vector measurements

Authors

  • A.A. Tунік National Aviation University
  • О.П. Басанець National Aviation University

DOI:

https://doi.org/10.18372/2306-1472.43.1853

Keywords:

control system, controller, observer, robust optimization

Abstract

The paper is deals system synthesis method of the robust control. The method is based on estimation of perfo-?mance and robustness represented by Н2 - and Н - norms accordingly. Particularities of the control object (solid body) establish the following sequence of steps in order to solve a problem: 1) restoring the full state-space vector applying the Luenberger observer; 2) optimal linear-quadratic regulator synthesis; 3) utilization the procedure of Н2/Н robust optimization. This technique has been applied taking into account the constraints on oscillations of the closed-loop system. The same procedure has been applied without the above-mentioned constraints. Simulation results have confirmed the effectiveness and efficiency of the proposed approach.

Author Biographies

A.A. Tунік, National Aviation University

О.П. Басанець, National Aviation University

References

Magni J.-F. Robust Flight Control. A Design Challenge / J.-F. Magni, S. Bennani, J. Terlouw. – Springer-Verlag, Berlin, New York. – 1997. – 649 p.

Tunik A. A. Parametric Robust Optimization of Digital Flight Control Systems / A.A. Tunik, E.A. Abramovich // Proceedings of the National Aviation University. – 2003. – №2 (17). – P. 31–38.

Дмитриевский А.А. Прикладные задачи теории оптимального управления движением беспилотных летательных аппаратов / А.А. Дмитриевский, Л.Н. Лысенко. – М.: Ма-шиностроение, 1978. – 328 с.

Теоретические основы проектирования ствольных управляемых ракет / под ред. О.П. Коростелева. – К.: Defense Express Library, 2007. – 455 c.

Tunik A.A. Robust Stabilization and Nominal Performance of the Flight Control System for Small UAV / A.A. Tunik, T.A. Galaguz // Applied and computation mathematics. – 2004. – Vol.3, №1. – P. 34–45.

Поляк Б.Т. Робастная устойчивость и управление / Поляк Б.Т., Щербаков П.С. – М.: Наука, 2002. – 303 с.

Kemin Zhou. Essentials of Robust Control / Zhou Kemin, J.C. Doyle. – Prentice Hall. – 1999. – May 25. – 425 p.

Квакернаак Х. Линейные оптимальные системы / Х. Квакернаак, Р. Сиван. – М.: Мир. – 1977. – 653 с.

Anderson B.D.O. Optimal Control / B.D.O. Anderson, J.B. Moore. – Prentice Hall Inc., Englewood Cliffs, – 1989. – 380 p.

Ackermann J. Parameter Space Design of Robust Control Systems / J. Ackermann // IEEE Transaction of Automatic Control. – 1980. – Vol. AC– 25. – № 6.– P. 1058 – 1072.

Doyle J.C. State Space Solution to Standard and Control Problems / J.C. Doyle, K. Glover, P.P. Khargonekar // IEEE Transaction of Automatic Control. – 1982. – Vol. 34. – № 8. – P. 831 – 847.

Куо Б. Теория и проектирование цифровых систем управления / Б. Куо. – М.: Машиностроение, 1986. – 448 с.

McLean D. Automatic Flight Control Systems / D. McLean. – Prentice Hall Inc., Englewood Cliffs, 1990. – 593 p.

How to Cite

Tунік A., & Басанець, О. (2010). Synthesis of robust discrete guidance system for solid body with incomplete state vector measurements. Proceedings of National Aviation University, 43(2), 76–84. https://doi.org/10.18372/2306-1472.43.1853

Issue

Section

AEROSPACE SYSTEMS FOR MONITORING AND CONTROL