METHODS OF DETERMINING THE PARAMETERS OF THE PERFORMANCE OF RANDOM MULTIPLE ACCESS WITH MULTIPLE REQUESTS
DOI:
https://doi.org/10.18372/2306-1472.47.15Keywords:
«interval intersection», queuing system, multiple requests, probability of intersection, Random Multiple Access SystemAbstract
Random Multiple Access System with streams of non-traditional requests are being researched. Mathematical models of these systems are queuing systems (QS) with multiple requests. Each request consists of multiple pulses. Overlapping of such requests leads to data loss in these systems. The algorithm for computing the "interval intersection" of two requests is offered. Estimating the probability of intersection of these requests is determined. A method of research of the replacement of QS stream with multiple requests by a QS stream with single request is developed. Sufficient conditions for such a replacement were found. Introduced is the concept of a system with limited aftereffect and equivalent stream in the proof, Some features, such as aplurality of requests, are typical requests in computer and wireless networks, where these networks use multiple access medium. This allows us to obtain some indicators of the functioning of such networksReferences
Бочаров П.П. Теория массового обслу-
живания / П.П. Бочаров, А.В. Печинкин. –
М.: РУДН, 1995. – 529 с.
Коба Е.В. Оценка вероятности наложе-
ния сигналов бортовых ответчиков методом
статистического моделирования / Е.В. Коба //
Повышение эффективности автоматизиро-
ванных систем управления: сб. науч. тр. – К.:
КИИГА, 1992. – С. 23–26.
Коба Е.В. Система обслуживания пуас-
соновского потока сдвоенных заявок /
Е.В. Коба // Доп. НАН України. – 1995. –
№3. – С. 9–11.
Дишлюк О.М. Модель процесу обслуго-
вування викликів в сотових мережах зв’яз-
ку / О.М. Дишлюк // зб. тез ІІІ Міжнар. наук.-
техн. конф. «Комп’ютерні системи та мере-
жні технології» (CSNT-2010). – К.:
НАУ-друк, 2010. – С. 35.
Хинчин А.Я. Работы по математической
теории массового обслуживания / А.Я. Хин-
чин. – М.: Гос. изд-вофиз.-мат. лит., 1963. – 235 с.