• Sergii Shamanskyi National Aviation University
  • Sergii Boichenko National Aviation University
  • Lesia Pavliukh National Aviation University



biofuel of the third generation, biogenic elements, eutrophication, microalgae, wastewater


Purpose and Objectives. The article analyses perspectives of the third generation biofuel production out of microalgae biomass in the weather conditions of typical regions of Ukraine. The aim is to model the productivity of biomass and the accumulation of lipids in algae, as well as to calculate the productivity when cultivated in typical regions of Ukraine. Methods of Research. By modeling the influence of weather conditions, particularly sunlight irradiation, estimates possibility of achieving crop yields of biomass per square meter of cultivated areas in the weather conditions of typical regions of Ukraine, determines the most perspective regions for it. Research Results. The results of calculation of monthly cultivation productivity with respect to microalgaes biomass in the five selected regions of Ukraine and results of calculating the annual biomass productivity of cultivation and productivity of accumulated lipids in the same regions of Ukraine are shown. Disscusion. Microalgae are perspective source of the third and fourth generations for biofuel production. It is possible to achieve crop yields more than 10 kg of biomass per square meter of cultivated areas in the weather conditions of Ukraine. The amount of accumulated lipids in this case can reach 6.6 kg/m2. The most perspective regions for cultivation can be considered eastern regions, in particular, the Odesa region. The essential resource, wich is necessary for cultivation is water, the basis of the cultural medium. To increase ecological and economic efficiency of cultivation, it proposes using municipal wastewater as cultural medium, combining the cultivation processes and wastewater purification processes from biogenic elements.

Author Biographies

Sergii Shamanskyi, National Aviation University

Candidate of Engineering (PhD). Associate Professor.

Ecology Department, of the National Aviation University.

Education: Vinnitsa State Technical University, Vinitsa, Ukraine (1995).

Research area: energy Efficient and Environmentally Friendly Wastewater Treatment Technologies.

Sergii Boichenko, National Aviation University

Doctor of Engineering. Professor.

Director of Research and Educational Institute of Environmental Safety of the National Aviation University.

Education: Kyiv Institute of Civil Aviation Engineers, Kyiv, Ukraine (1992).

Research area: effective and Efficient Usage of Fuels and Lubricants and Technological Liquids (chemmotology).

Lesia Pavliukh, National Aviation University

Candidate of Engineering (PhD). Associate Professor.

Ecology Department, Research and Educational Institute of Environmental Safety, National Aviation University, Kyiv, Ukraine.

Education: Environment Protection Faculty of the National Aviation University, Kyiv, Ukraine (2005).

Research area: Waste Management.


Aksenov A. F., Seregin E. P., Yanovskii L. S., and Boichenko S. V. (2013) Modern Paradigm and Prospects of Chemmotology Development // Chemistry and Technology of Fuels and Oils, no.4 (578), pp. 13–20.

Boichenko Sergii (2017) Phenomenological concept of chemmotology // Proceedings of National Aviation University, no. 1, pp. 113–119. doi: 10.18372/2306-1472.70.11431

Boichenko S., Vovk O., Shkilniuk I., Lejda K.(2013) Traditional and alternative jet fuels: problems of quality standardization // Journal of Petroleum & Environmental Biotechnology, vol. 4, Iss. 3. doi:

Iakovlieva A.V, Boichenko S.V., Vovk O. O. (2013) Overview of innovative technologies for aviation fuels production // Journal of Chemistry and chemical technology, vol. 7, no. 3, pp. 305–312.

Kasturi Dutta, Achlesh Daverey, Jih-Gaw Lin (2014) Evolution retrospective for alternative fuels: First to fourth generation // Renewable Energy, vol. 69, pp. 114–122.

Becker E. W. (2007) Micro-algae as a source of protein // Biotechnol. Adv., vol. 25, I. 2, pp. 207–210.

Guedes A. C., Amaro H. M., Malcata F. X. (2011) Microalgae as Sources of Caroteoids // Mar. Drugs, vol. 9, I. 4, pp. 625–644.

Skjànes K., Rebours C., Lindblad P. (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process // Crit. Rev. Biotechnol, vol. 33, I. 2, pp. 172–215.

Halim R., Danquah M. K., Webley P. A. (2012) Extraction of oil from microalgae for biodiesel production // Biotechnol. Adv., vol. 30, I. 3, pp. 709–732.

Tsoglin L. N., Pronina N. A. (2012) Biotekhnologiya mikrovodoroslei [Biotechnology of microalque]. Moskva, Nauchnyi mir Publ., 182 p. (in Russian)

Chen C. Y., Yeh K. L., Aisyah R., Lee D. J., Chang J. S. (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review // Bioresource Technol., vol. 102, no. 1, pp. 71–81.

Liang Y., Sarkany N., Cui Y. (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions // Biotechnol. Lett., vol. 31, pp. 1043 – 1049.

Sudhakar K., Premalatha M. (2012) Theoretical Assessment of Algal Biomass Potential for Carbon Mitigation and Biofuel Production // Iranical Jornal of Energy and Environment, no. 3, pp. 232–240.

Karta solnechnoi aktivnosti v Ukraine (2018) Available at:

Kharakteristiki solnechnoi radiatsii (2018) Available at:

Teplitsa Ekspert (2018) Available at:

Abraham M. Asmare, Berhanu A. Demessie, Ganti S. Murthy (2013). Theoretical Estimation the Potential of Algal Biomass for Biofuel Production and Carbon Sequestration in Ethiopoa // International Journal of Renewable Energy Research, vol. 3, no. 3, pp. 560–570.

Sudhakar K., Rajesh M., Premalatha M. A (2012) Mathematical Model to Assess the Potential of Algal Bio-Fuels in India // Energy Sourses. Part A, 34, pp. 1114–1120.

Giuseppe Torzillo, Benjamin Pushparaj, Jiri Masojidek, Avigad Vonshak (2003) Biological Constraints in Algal Biotechnology // Biotechnology and Bioprocess Engineering, no. 8, pp. 338–348.

Hussain K., Nawaz K., Majeed A. Lin F. (2010) Economically Effective Potential of Algae for Biofuel Production // World Applied Sciences Journal, no. 9(11), pp. 1313–1323.

Pooja K., Himabindu V. (2014) Mixotrophic Cultivation of Botryococcus Braunii for Biomass and Lipid Yields with Simultaneous CO2 Sequestration // Journal of Engineering Research and Applications, vol. 4, Issue 10 (Part – 6), pp. 151–156.

Jacovides C. P., Timvios F. S., Papaioannou G., Asimakopoulos D. N., Theofilou C. M. (2004) Ratio of PAR to Broadband Solar Radiation Measured in Cyprus // Agricultural and Forest Meteorology, no.121. – P. 135–140.

Chan-Hee Lee, Hyun-Sik Chae, Seung-Hoon Lee, Han Soon Kim (2015) Growth Characteristics and Lipid Content of three Korean Isolates of Botryococcus Braunii (Trebouxiophyceae) // Ecology and Environment, no. 38 (1), pp. 67–74.

Asma J. Yusoff F. M., Srikanth R. M. (2015) Growth Rate Assessment of High Lipid Producing Microalga Botryococcus braunii in Different Culture Media // Iranian Journal of Fisheries Sciences, no. 14 (2), pp. 436–445.

Khalid A. Al-Hothaly, Aidyn Mouradov, Abdulatif A. Mansur, Brian H. May, Andrew S. Ball, Eric M. Adetutu (2015) The Effect of Media on Biomass and Oil Production in Botryococcus braunii Strains Kossou-4 and Overjuyo-3 // International Journal of Clean Coal and Energy, no. 4, pp. 11–22.

Xu H., Miao X. L., Wu Q. Y. (2006) High Quality Biodisel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Ferments // Journal of Biotechnology, no. 126, pp. 499–507.

Shamansjkyj S. J., Bojchenko M. S., Pavljukh L. I. (2017) Ocinka masovoji ta lipidnoji produktyvnosti kuljtyvuvannja mikrovodorostej v umovakh Kyjivsjkoji oblasti dlja vyrobnyctva biopalyva // Modern methods, innovations and experience of practical application in the field of technical sciences. International research and practice conference, December 27–28, Radom, Republic of Poland, pp. 87-90 (in Ukrainian)

Singh R., Birru R., Sibi G. (2017) Nitrogen Removal Efficiencies of Chlorella Vulgaris from Urban Wastewater for Reduced Eutrophication // Journal of Environmental Protection, no. 8, pp. 1–11.

Manea R. G., Ardelean I. I. (2016) Nitrogen and Phosphorus Removal from Municipal Wastewater Using Cinsortia of Photosynthetic Microorganisms // Scientific Bulletin. Series F. Biotechnologies, vol. XX, pp. 286–292.

Delgadillo-Mirquez L., Lopes F., Taidi B., Pareau D. (2016) Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture // Biotechnology Reports, no. 11, pp. 18–26.

Shamanskyi S., Boichenko S. (2016) Development of Environmentally Safe Technological Water Disposal Scheme of Aviation Enterprise // Восточно-европейский журнал передовых технологий, no. 6/10(84), pp. 49–57.

Shamanskii S. I., Boichenko S. V., Matveeva I. V. (2017) Tekhnologicheskie osnovy organizatsii ekologicheski bezopasnogo funktsionirovaniya sistemy vodootvedeniya aviapredpriyatiya // Ekotekhnologii i resursosberezhenie, no. 2, pp. 59-66 (in Russian)

Shamansjkyj S. J., Bojchenko S.V. (2016) Construction Arrangement for Cultivating Microalgae for Motor Fuel Production // Systemy i Środki Transportu Samochodnego. Wybrane Zagadnienia. Monografia nr. 7. Seria: Transport. – Rzeszów: Politechnika Rzeszowska, pp. 181-188.

Lenntech. Phosphorous removal from wastewater (2017) Available at:

Yagov G. V. (2008) Kontrol' soderzhaniya azota pri ochistke stochnykh vod // Vodosnabzhenie i sanitarnaya tekhnika, no. 7, pp. 45-52 (in Russian)



How to Cite

Shamanskyi, S., Boichenko, S., & Pavliukh, L. (2018). ESTIMATING OF MICROALGAE CULTIVATION PRODUCTIVITY FOR BIOFUEL PRODUCTION IN UKRAINE CONDITIONS. Proceedings of National Aviation University, 76(3), 67–77.




Most read articles by the same author(s)