FEATURE DETECTION FOR REALISTIC IMAGES BASED ON B-SPLINES OF 3rd ORDER RELATED TO INTERPOLAR ON AVERAGE
DOI:
https://doi.org/10.18372/2306-1472.71.11750Keywords:
519.245, 519.674(045)Abstract
Purpose: One approach where recognition of objects in a digital image is based on a search for special points of the function of two variables model intensity lighting. As a model proposed to use a two-dimensional polynomial spline-based B-splines of order. For linear operators that determine the characteristics of a digital image is necessary to conduct appropriate studies partial derivatives of first and second order spline said. Methods: Active obtaining explicit views of partial derivatives and study of their standards and quality of approximation, further defining particular cases suitable for implementation in the software. Results: The paper proposes a calculation of differentials and their partial cases for two-dimensional polynomial spline based on B-splines of third order. Based on these, analogs of known operators that determine the local characteristics of digital images were proposed. Discussion: Further research may be to obtain similar operators based on combinations of two-dimensional B-spline above the second order analysis capabilities and their application to problems of digital imaging and videoReferences
Kukharenko B.G. (2011) Algoritmy analiza izobrazhenii dlya opredeleniya lokal'nykh osobennostei i raspoznavaniya ob’ektov i panorama. Informatsion-nye tekhnologii, no 7, 32 p.
Prewitt J.M.S., Mendelsohn M.L. (1966) The analysis of cell images. Annals of the New York Acad-emy of Science, vol. 128, pp. 1035-1053.
Sobel I.E. (1970) Camera Models and Ma-chine Perception. PhD Thesis. Stanford University, CA, 352 p.
Canny J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no 6, pp. 679-698.
Marr D.C., Hildreth E. (1980) Theory of edge detection. Proceedings of the Royal Society of London, vol. 207, pp. 187-217.
Schmid C., Mohr R., Bauckhage C. (2000) Evaluation of interest point detectors. International Journal of Computer Vision, vol. 37, no 2, pp. 151-172.
Lindeberg T., Wah B. (2009) Encyclopedia of Computer Science and Engineering. Hoboken, New Jersey: John Wiley and Sons, vol. IV, pp. 2495 – 2504.
Koenderink J.J., van Dorn A.J. (1992) Generic neighborhood operators. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, vol. 14, no 6, pp. 597-605.
Prystavka P.O., Riabyi M.O. (2012) Model realistychnykh zobrazhen na osnovi dvovymirnykh splainiv, blyzkykh do interpoliatsiinykh u serednomu. Naukoiemni tekhnolohii, no 3 (15), pp. 67-71.
Prystavka P.O. (2015) Vyznachennia osoblyvostei zobrazhen na osnovi kombinatsii V-splainiv druhoho poriadku, blyzkykh do in-terpoliatsiinykh u serednomu. Aktualni problemy av-tomatyzatsii ta informatsiinykh tekhnolohii : Zbirnik nauk: LIRA, vol.19, pp. 67–77.
Prystavka P.O. (2004) Polinomailni splainy pry obrobtsi danykh. Issue Dnipropetrovsk university, 236 p.
Ligun A.A., Shumeiko A.A. (1997) Asimp-toticheskie metody vosstanovleniya krivykh. NANU, 358 p.
Chui Ch. (2001) Vvedenie v veivlety. Mir, 412 p.
Vasilenko V.A., Zyuzin M.V., Kovalkov A.V. (1984) Splain-funktsii i tsifrovye fil'try. Novosi-birsk: Vychislitel'nyi tsentr SO AN SSSR, 141 p.
Prystavka P.O. (2006) Obchysliuvalni aspekty zastosuvannia polinomialnykh splainiv pry pobudovi filtriv. Aktualni problemy avtomatyzatsii ta informatsiinykh tekhnolohii, no.10, pp.3-14.
Lowe D.G. (2007) Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, no 2, pp. 91-110.
Юрій Касьянов – YouTube [електронний ресурс] // https://www.youtube.com/channel/UCTG6kc99C4U6GNEx7h_apwA