FEATURES OF THE IRIS IMAGE PRE-PROCESSING ALGORITHM
DOI:
https://doi.org/10.18372/2410-7840.17.8205Keywords:
image recognition, iris, image processing, biometric identification, segmentation,Abstract
The article presents a brief overview of the not numerous issues of biometric identification based on iris. Usually, the original image corrupted by equipment scanning noise, discretization or data transmission channels, whe-reby images are uneven brightness and contrast. This leads to breaks in linear objects, masking of the analyzed complex objects, which leads to a large number of errors and failures, especially automatic identification and recog-nition systems. Preprocessing includes: equation of the general luminance background image, the elimination of the original image high-frequency noise and various arti-facts, contrast binary image and other functional trans-formations. Output description of the original informa-tion must be maximally adapted to storage, transmission and analysis of all possible solutions. But with all these transformations one of the most important indicators should be to preserve the maximum number of special «key» elements of the original information. Identified promising areas for further research in the field of iris image recognition. As the test data used the image of an open database.References
. Автоматическая идентификация. Идентификация биометрическая. Форматы обмена биометрическими данными: ГОСТ Р ИСО/МЭК 19794-6-2006-2007, часть 6. Данные изображения раду-жной оболочки глаза. – 28 с.
. Монич Ю., Старовойтов В. Обработка изобра-жений радужной оболочки глаза в целях иден-тификации границ радужной оболочки глаза // Искусственный интеллект, 3, 2009. – C. 397-403.
. Павельева Е., Крылов А. Поиск и анализ ключевых точек радужной оболочки глаза методом преобразования Эрмита // Информатика и ее применения. т.4, в.1, 2010. – C. 79-82.
. Рябовa Л.В., Голeмбиeвскaя Ю.Г. Бaзовыe опeрaторы для обрaботки изобрaжeний рaдужной оболочки глaзa // Нaукa і молодь: Зб. нaук. пр. – К.: НAУ, 2006. – Вип.6.– С. 45-48.
. Трекин А. Метод проекций яркости при поиске зрачка на изображении//Технические науки и практика. Сб. трудов «Молодой ученый – 2012», Чита. – C. 24-28.
. C. Boyce et all., «Multispectral Iris Analysis: A Preliminary Stady», IEEE CSPress, 2006, pp. 51-56.
. J. Daugman, «High connfidence visual recognition of persons by a test of statistical independence», IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15 (11), рр. 1148-1161, 1993.
. L. Flom, A. Safir, US Patent # 4 641, 349, U.S. Gjvernment Printng Office, Washington, DC, 1987.
. Hollingsworth K. Pupil dilation Iris biomenrric performance / K. Hollingworth, P.Flynn //Computer Vision and Image Understanding. - Vol.113 - pp. 150-157, 2009.
. M. Sunder, A.Ross «Iris Image Retrielval Based on Macrofeatures» ICPR 2010, pp. 1316-1321.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).