A cryptographic use indicator matrices systems Walsh functions
DOI:
https://doi.org/10.18372/2410-7840.18.10107Keywords:
system of Walsh functions, display matrix systems Walsh generalized Gray codes, two-dimensional discrete Fourier transform, cryptographic protection of video packetsAbstract
The article deals with the formation and application of cryptographic systems, symmetric Walsh functions binary power order. A synthesis system is based on their indicator matrices. The indicator is right-sided symmetric (0,1)-matrix, i.e. matrix, symmetric with respect to the auxiliary di-agonal, non-degenerate in the ring of residues modulo 2. The order of test matrices is a logarithmic dependence on the order of the Walsh system. The decision marked the problem of the synthesis of the so-called direct problem Walsh. The inverse problem is that for a given matrix of Walsh matrix to calculate its tally. The problem of the development of algorithms for cryptographic protection of video packets transmitted over the air on board unmanned aircraft. Kripto transform reduced to a two-dimensional fast Fourier transform in the basis of the video systems Walsh functions are protected from unauthorized access. Establishes the right permutation counts discrete input signal processor FFT calculates the spectrum of the signal in a given basis Walsh functionsReferences
Hadamard M. J., Buii. Sci. Math, 1898, A17, 240.
Walsh I. L. Amer. J. Math., 1923, 45, 5.
Paley B. E. Proc. London Math. Soc. (2),1932, 34, 241.
Виленкин Н. Я. Об одном классе полных ортогональных систем. // Известия АН СССР. Сер. мат., 1949, № 3.
Chrestenson H. E. A class of generalired Walsh functions. // Pacific J. Math., 1955, v. 5.
Белецкий А. Я. Дискретные ортогональные базисы Виленкина-Крестенсона функций. — Научная монография. — Palmarium Academic Publishing, Germany, 2015. – 232 с. ISBN 978-3-659-60300-6.
Белецкий А. Я. Индикаторные матрицы систем функций Уолша. / А. Я. Белецкий. // Вісник СумДУ. Серія Технічни науки, № 4, 2009. – С. 85-93
Артемьев М. Ю. О формировании симметрических систем функций Виленкина-Крестенсона. / М. Ю. Артемьев, Г. П. Гаев, Т. Э. Кренкель, А. П. Скотников // Радиотехника и электроника, 1978, № 7, с. 1432-1440.
Белецкий А. Я. Комбинаторика кодов Грея. — Научное издание. / А. Я. Белецкий. — К.: Изд. компания «Квіц», 2003. – 506 с.
Ен. Функции Уолша и код Грея. // Зарубежная радиоэлектроника, № 7, 1972. – С. 27-35.
Grey F. Pulse code communication. – Pat. USA, # 2632058, 1953.
Блейхут Р. Теория и практика кодов, контролирующих ошибки. / Р. Блейхут. – М.: Мир, 1986. – 576 с.
Белецкий А. Я. Коды Грея. — Научное издание. / А. Я. Белецкий. — К.: Изд. компания «Квіц», 2002. – 150 с.
Белецкий А. Я. Обобщенные коды Грея. — Научная монография. — Palmarium Academic Publishing, Germany, 2014. – 208 с. ISBN 978-3-639-68389-9.
Белецкий А.Я. Прямая и обратная задача Уолша. /А. Я. Белецкий, Е. А. Белецкий. — Тезисы МНК «АВИА-2013», Киев, НАУ, Том 4. – С. 24.36-24.39 [Электронный ресурс] avia.nau.edu.ua/doc/2013/ AVIA2013_v4.pdf
Beletsky A. Ya. Syntesis and analysis of system of Wolsh-Cooly basis functions. Proceedings of XIII International Conference NIKON-2000. – Wroclaw, 2000.
Трахтман А. М. Основы теории дискретных сигналов на конечных интервалах. / А. М. Трахтман, В. А. Трахтман — М.: Сов. радио, 1975. − 208 с.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).