IMPLEMENTATION OF IP-TECHNOLOGIES IN THE AERONAUTICAL TELECOMMUNICATION NETWORK OF UKRAINE
DOI:
https://doi.org/10.18372/2310-5461.67.20025Keywords:
aeronautical telecommunications, ATN/IPS, voice quality, E-model, network load forecastingAbstract
This article presents a comprehensive study of the technical and regulatory standards of the international organizations ICAO and EUROCAE in the context of modernization of aviation telecommunications equipment in Ukraine through the implementation of the ATN/IPS converged aviation telecommunications network architecture. The expediency of replacing outdated TDM networks with modern IP technologies, in particular, in terms of organizing voice communication for air traffic control based on VoIP technology, is substantiated. The requirements for the use of protocols at the key layers of the OSI model are analyzed: IPv6, TCP/UDP, IPsec, IKE2, SIP, RTP and recommendations for the quality of service. The rationale for choosing network equipment parameters in terms of minimizing packet transmission delays over IP networks in order to ensure compliance with the regulatory indicators required for the stable operation of air traffic control systems is provided. The permissible levels of jitter, packet loss, as well as the limit values of MOS and delays of payload and control signals are determined. The total delay of voice traffic transmission is calculated, taking into account encryption, buffering and the use of audio codecs in terms of ensuring the required voice quality based on the E-model. A mathematical approach is proposed to calculate the forecasting of the load on the telecommunication network of aviation telecommunications in Ukraine, based on the analysis of passenger flows between regional airports of Ukraine using a discrete Markov system. The results obtained will help to increase the efficiency of the implementation of IP technologies in aviation networks and the implementation of their modernization programs after the end of the war and the opening of Ukrainian airspace.
References
Manual on the Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) standards and protocols: Doc 9896. International Civil Aviation Organization (ICAO), 2015. 112 p.
Голубничий О. Аналіз вимог та рекомендацій ICAO щодо забезпечення інформаційної безпеки мережі ATN. Захист інформації. 2013. Т. 15, №4. С. 377–382.
Security in Digital Aeronautical Communications: A comprehensive gap analysis. International journal of critical infrastructure protection / N. Mäurer. et al .2022. Vol. 38, no. 5. Article 100549. DOI:10.1016/j.ijcip.2022.100549
Enhancing air traffic control communication systems with integrated automatic speech recognition: models, applications and performance evaluation / Z. Wang et al. Sensors. 2024. Vol. 24, no. 14. DOI:10.3390/s24144715 (date of access: 10.07.2025).
A survey of wireless networks for future aerial communications (FACOM) / A. Baltaci et al. IEEE communications surveys & tutorials. 2021. P.2833- 2884. DOI:10.1109/comst.2021.3103044 (date of access: 11.07.2025).
LDACS End-to-End ATN/IPS Performance / B. Haindl et al. 2024 Integrated Communications, Navigation and Surveillance conference (ICNS), Herndon, VA, USA, 23–25 April 2024. DOI:10.1109/icns60906.2024.10550548 (date of access: 12.07.2025).
Lala V., Pirovano A., Radzik J. Towards a new approach to ensure end-to-end reliability of aeronautical data communications. The aeronautical journal. 2025. Vol 129, Issue 1334. P. 1001–1027. URL: https://doi.org/10.1017/aer.2024.139 (date of access 12.07.2025).
Multiple-Antenna aided aeronautical communications in air-ground integrated networks: channel estimation, reliable transmission, and multiple access / J. Zhao et al. IEEE wireless communications. 2023. P. 105– 111. URL: https://doi.org/10.1109/mwc.014.2200414 (date of access 13.07.2025).
Bradford S., Hauw O., Saccone G. Future Connectivity for Aviation (FCAV). Presentation at ATIEC 2023 Conference. Federal Aviation Administration (FAA), 2023. URL: https://www.faa.gov/air_traffic/flight_info/aeronav/atiec/media/Presentations/2023/Day_3/Future%20Connectivity%20for%20Aviation%20%28FCAV%29.pdf (date of access 14.07.2025).
Single European Sky ATM Research 3 Joint Undertaking. SESAR Innovation Pipeline: Air Traffic Management Research and Innovation: 2024 highlights. Luxembourg: Publications Office of the European Union, 2025. DOI: 10.2829/0520524 (date of access 13.07.2025).
Internet Protocol, Version 6 (IPv6) Specification: RFC 8200. IETF, 2017. DOI: 10.17487/RFC8200. (date of access 10.04.2025).
Internet Protocol, Version 6 (IPv6) Addressing Architecture: RFC 4291. IETF, 2006. 40 pp. DOI: 10.17487/RFC4291. (date of access: 11.04.2025).
TCP Extensions for High Performance: RFC 1323. IETF, 1992. 37 pp. DOI: 10.17487/RFC1323. (date of access 11.04.2025).
UDP Usage Guidelines: RFC 8085. IETF, 2017. 55 pp. DOI: 10.17487/RFC8085. (date of access 12.04.2025).
A Border Gateway Protocol 4 (BGP 4): RFC 4271. IETF, 2006. 104 pp. DOI: 10.17487/RFC4271. (date of access 15.04.2025).
ED-136. Voice over IP ATM System Operational and Technical Requirements. EUROCAE. 2009. 112 p.
ED-137. Interoperability Standards for VoIP ATM Components. Part 1: Radio. EUROCAE. 2009. 76 p.
ED-137 Interoperability Standards for VoIP ATM Components. Part 2: Telephone. EUROCAE. 2009. 155 p.
ED-137 Interoperability Standards for VoIP ATM Components. Part 3: Recording. EUROCAE. 2009. 30 p.
ED-138 Network Requirements and Performances for Voice over IP Air Traffic Management Systems. EUROCAE. 2009. 230 p.
SIP: Session Initiation Protocol: RFC 3261. IETF, 2002. 109 p. DOI: 10.17487/RFC3261. (date of access 20.04.2025).
Session Initiation Protocol (SIP)-H.323 Interworking Requirements: RFC 4123. IETF, 2005. 32 p. DOI: 10.17487/RFC4123. (date of access 22.04.2025).
The Secure Real-time Transport Protocol (SRTP): RFC 3711. IETF, 2004. 56 p. DOI: 10.17487/RFC3711. (date of access 23.04.2025).
RTP: A Transport Protocol for Real-Time Applications: RFC 3550. IETF, 2003. 104 p. DOI: 10.17487/RFC3550. (date of access 25.04.2025).
An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks: RFC 3411. IETF, 2002. 33 p. DOI: 10.17487/RFC3411 (date of access 25.04.2025).
ITU-T. Recommendation P.800: Methods for Subjective Determination of Transmission Quality. Geneva: ITU, 1996.
ITU-T. Recommendation G.107: The E-model, a Computational Model for Use in Transmission Planning. Geneva: ITU, 2005.
ITU-T. Recommendation G.114: One-way Transmission Time. Geneva: ITU, 2003.
ITU-T. Recommendation G.711: Pulse Code Modulation (PCM) of Voice Frequencies. Geneva: ITU, 1988.
ITU-T. Recommendation G.728: Coding of Speech at 16 Kbit/s Using Low-delay Code Excited Linear Prediction. Geneva: ITU, 1992.
ITU-T. Recommendation G.729: Coding of Speech Signals at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP). Geneva: ITU, 2007.
Luconi V., Vecchio A. Impact of the first months of war on routing and latency in Ukraine. Computer Networks. 2023. Vol. 224. DOI: 10.1016/j.comnet.2023.109596.
Huang C. Secure Network Solutions for Cloud Services: Master’s thesis. Ballarat. 2013. 98 p.
Eskandar A. A., Syed M. R., Zarei B. SIP over IP VPN: Performance Analysis. Proceedings of the International Conference on Internet Computing and Big Data (ICOMP’14), Las Vegas, USA. 2014.
Assessment of the availability of communication channels with UAVs./ G. Konakhovych et al. CEUR Workshop Proceedings. 2024. Vol. 3732. URL:https://ceur-ws.org/Vol-3732/paper04.pdf (date of access: 08.04.2025)
Ladefoged, P., Johnson, K. A Course in Phonetics. 7th ed. Boston: Cengage Learning, 2014. 464 p.
Zacha P., Pokorny M., Baleja J. Quality of Experience of Voice Services in Corporate Network. Procedia Economics and Finance. 2014. Vol. 12. P. 771–779. DOI: 10.1016/S2212-5671(14)00404-3.
Козлюк І.О. Забезпечення економічної безпеки авіаційної галузі: монографія. К : НАУ, 2005. 236 с.