INCREASING THE RELIABILITY OF NAVIGATION TOOLS UNDER THE INFLUENCE OF VARIABLE TEMPERATURES FOR EFFICIENT OPERATION BY WATER TRANSPORT
DOI:
https://doi.org/10.18372/2310-5461.63.19761Keywords:
navigation, coverage, destruction, activation energy, IR spectrumAbstract
Thanks to advanced logistics, water transport transports an unlimited amount of various cargoes. Therefore, water transport is one of the world's largest carriers. First, this is due to the extensive network of ports and sea routes, which allows transporting goods over long distances, including intercontinental ones. Therefore, ensuring global connectivity is critical to delivering goods on time.
The work presents the technological aspects of improving the thermophysical characteristics of epoxy composite protective coatings to protect navigational means of water transport that operate under variable external factors. The polymerized ED-20 epoxy binder was used with PEPA polyethylene polyamine hardener to form epoxy composite protective coatings. The biocidal filler trimethoprim C14H18N4O3 (CAS: 738-70-5) was used to increase the thermophysical properties of polymeric materials, with a content of 5.0-30.0 pts.wt. Based on thermogravimetric (TGA) and differential thermal (DTA) analysis, the values of the critical parameters necessary to determine the temperature range at which it is possible to operate the developed epoxy composite coatings intended for the protection of navigation aids without changing their properties, in particular: the maximum temperature of the beginning of mass loss is – T0 = 609 K; relative mass loss – εm = 69%; the initial temperature of the exoeffect is Тinit = 488 K; the maximum value of the peak temperature of the exoeffect is Tmax = 550 K. A mathematical calculation of the values of the activation energy of thermal destruction was performed to determine the resistance to the destruction of chemical bonds under the influence of temperature. It has been proven that epoxy composite coatings filled with trimethoprim at a content of 15.0 pts.wt. are characterized by the maximum activation energy of Ea = 167 kJ/mol, which indicates the thermal stability of filled epoxy composite coatings. The course of physicochemical processes of thermal destruction of epoxy composite coatings filled with trimethoprim was determined by the method of IR spectral analysis.
Based on complex studies using DTA, TGA, IR spectral analysis, and mathematical calculation of the activation energy, it was proved that the operating temperature range of the developed epoxy coatings should not exceed 488 K.
References
ISO 9223. Corrosion of metals and alloys. Cor-rosivity of atmospheres. Classi®cation. ISO.Geneva. (1992). https://cdn.standards.iteh.ai/samples/16855/c18be4081cfc44aba101e3448e3539b6/ISO-9223-1992.pdf (access data 01.11.2024)
International maritime organization IMO. RESOLUTION A.744(18) https://wwwcdn.imo.org/localresources/en/KnowledgeCen-tre/IndexofIMOResolutions/AssemblyDocuments/A.744(18).pdf (access data 01.11.2024)
SOLAS (Safety of Life at Sea) Consolidated Edition, 2020. https://www.samgongustofa.is/media/english/SOLAS-2020-Consolidated-Edition.pdf (access data 01.11.2024)
RESOLUTION MSC.215(82). https://wwwcdn.imo.org/localresources/en/KnowledgeCen-tre/IndexofIMOResolutions/MSCResolutions/MSC.215(82).pdf (access data 01.11.2024)
Rules and Regulations for the Classification of Ships. https://www.imorules.com/LRSHIP.html (ac-cess data 01.11.2024)
Lanruo Han, Qianyi Pang, Xiang Yu. Applica-tion of Organic Coating in Marine Anticorro-sion. Highlights in Science, Engineering and Technology. 58, 131-141 (2023). https://doi.org/10.54097/hset.v58i.10051
Wang N., Yin X., Zhang J., Gao H., Diao X., Yao H. Preparation and Anti-Corrosive Proper-ties of Waterborne Epoxy Composite Coating Containing Graphene Oxide Grafted with So-dium Tripolyphosphate. Coatings. 10, 307 (2020). https://doi.org/10.3390/coatings10040307
Alcántara J. Marine atmospheric corrosion of carbon steel: a review. Materials. 10 (4), 406 (2017). https://doi.org/10.3390/ma10040406
DobrotvorI.G, Stukhlyak P.D., Mykytyshyn A.G., et al. Influence of Thickness and Dis-persed Impurities on Residual Stresses in Epoxy Composite Coatings. Strength Mater. 53, 283–290 (2021). DOI:10.1007/s11223-021-00287-x
Demchenko V.L., Kobylinskyi S.M., Riabov S.V., et al., Novel approach to the formation of silver-containing nanocomposites by thermo-chemical reduction of Ag+ ions in interpoly-electrolyte-metal complexes, Appl. Nanosci-ence. 10 (12), 5409–5419 (2020). DOI:10.1007/s13204-020-01368-0
Stukhlyak P.D., Moroz K.M. Influence of po-rosity in the epoxy matrix-polyvinyl alcohol-disperse filler system on the impact toughness. Mater. Sci. 46(4), 455-463 (2011). https://doi.org/10.1007/s11003-011-9312-x
Lazarenko M.M., Alekseev O.M., Kondratenko S.V., et al. Papadopoulos, Physical-chemical properties of nanocellulose synthesized from Miscanthus x Giganteus. Mol. Cryst. Liq. Cryst. 768 (1), 42–56 (2024). DOI:10.1080/15421406.2023.2231263
Buketov A.V., Dolgov N.A., Sapronov A.A., Nigalatii V.D., Babich N.V. Mechanical Char-acteristics of Epoxy Nanocomposite Coatings with Ultradisperse Diamond Particles. Strength of Materials. 49 (3), 464-471 (2017). DOI 10.1007/s11223-017-9888-y
Louda P., Sharko A., StepanchikovD., Sharko A. Experimental and Theoretical Study of Plas-tic Deformation of Epoxy Coatings on Metal Substrates Using the Acoustic Emission Meth-od. Materials. 15 (11), 3791 (2022). https://doi.org/10.3390/ma15113791
Totosko O.V., Stukhlyak P.D., Mykytyshyn A.H., Levytskyi V.V. Investigation of electro-spark hydraulic shock influence on adhesive-cohesion characteristics of epoxy coatings. Funct. Mater. 27 (4), 760-766 (2020). https://doi.org/10.15407/fm27.04.760.
Dolgov N., Stukhlyak P., Totosko O., et al. Analytical stress analysis of the furan epoxy composite coatings subjected to tensile test. Mech. of Adv. Mater. and Struct. 2023 (2023). https://doi.org/10.1080/15376494.2023.2239811
Qin Z., Su Y., Bai Y., Lu H., Peng T., Zhong H., Chen T., Du X. Improving the Corrosion Resistance of Zn-Rich Epoxy Coating with Three-Dimensional Porous Graphene. Poly-mers. 15(21):4302 (2023). https://doi.org/10.3390/polym15214302
Panda A., Dyadyura K., Valíček J., et al. Eco-toxicity Study of New Composite Materials Based on Epoxy Matrix DER-331 Filled with Biocides Used for Industrial Applications. Pol-ymers, 14(16):3275 (2022). https://doi.org/10.3390/polym14163275
Buketov A., Maruschak P., Sapronov O., Brailo M., Leshchenko O., Bencheikh L., Menou A. Investigation of thermophysical properties of epoxy Nanocomposites. Molecular Crystals and Liquid Crystals. 628, 167–179 (2016). DOI:10.1080/15421406.2015.1137122
Sapronov O., Buketov A., Kim B., Vorobiov P., Sapronova L. Increasing the Service Life of Marine Transport Using Heat-Resistant Poly-mer Nanocomposites. Materials. 17, 1503 (2024) doi.org/ 10.3390/ma17071503
Sapronov O., Maruschak P., SotsenkoV., et al., Development and Use of New Polymer Adhe-sives for the Restoration of Marine Equipment Units, J. Mar. Sci. Eng. 8 (7) 527 (2020). DOI:https://doi.org/10.3390/jmse8070527
Broido, A.: A simple sensitive graphical meth-od of treating thermo gravimetric analyze data. J. Polym. Sci.- Part A. 7, 1761–1773 (1969). https://doi.org/10.1002/pol.1969.160071012
Arshad, M. A., Maaroufi, A., Benavente, R., Pereña, J. M., & Pinto, G. Thermal degradation kinetics of insulating/conducting epoxy/Zn composites under nonisothermal conditions. Polymer Composites. 34(12), 2049–2060 (2013). DOI:10.1002/pc.22613
M. Azeem Arshad1, A. Maaroufi, R. Benaven-te, G. Pinto. Kinetics of the Thermal Decom-position Mechanisms of Conducting and Non-conducting epoxy. J. Mater. Environ. Sci. 5 (5), 1342-1354 (2014). https://www.semanticscholar.org/paper/Kinetics-of-the-Thermal-Decomposition-Mechanisms-of-Arshad-Marou-fi/869e27f1cfaf8fb9da5f90093fe582df5b215164
Friedman H.L. Kinetics of Thermal Degrada-tion of Char-Forming Plastics from Thermo-gravimetry. Application to a Phenolic Plastic. Journal of Polymer Science. 6 (1), 183-185 (1964). DOI:10.1002/polc.5070060121
Sun, X.; Li, Z.; Das, O.; Hedenqvist, M.S. Su-perior flame retardancy and smoke suppression of epoxy resins with zinc fer-rite@polyphosphazene nanocomposites. Com-pos. Part A Appl. Sci. Manuf. 167, 107417 (2023). DOI:10.1016/j.compositesa.2022.107417
Yu B., Shi Y., Yuan B., Qiu S., Xing W., Hu W., Song L., Lo S., Hu Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nano-composites. J. Mater. Chem. A. 5, 8034–8044 (2015). https://doi.org/10.1039/C4TA06613H
Brnardic, I.; Macan, J.; Ivankovic, H.; Ivankovic, M. Thermal degradation kinetics of epoxy/organically modified montmorillonite nanocomposites. J. Appl. Polym. Sci. 107, 1932–1938 (2008). DOI:10.1002/app.27230
Sapronov O.O., Buketov A.V., Zinchenko D.О., Yatsyuk V.M. Features of structural pro-cesses in epoxy composites filled with silver carbonate on increase in temperature. Compo-sites: Mechanics, Computations, Applications. An International Journal. 8(1), 47-65 (2017). DOI: 10.1615/CompMechComputApplIntJ.v8.i1.10.