Use of complementary filter for identification of motion parameters of elements of spherical parallel mechanism

Authors

Keywords:

spherical parallel mechanism, complementary filter, accelerometer, gyroscope, identification of motion parameters, control of robotic objects, assessment of status, forecasting, correction of measurements, smoothing data

Abstract

The article proposes to use a complementary filter in the SPM control system for processing data from the accelerometer and gyroscope. A complementary filter combines data from an accelerometer that measures linear acceleration, which can be used to determine the angle of inclination in a static position, and a gyroscope, which measures angular velocity, which is used to integrate and determine the angle of rotation. The filter calculates a weighted average of these two measurements, with the weights chosen to minimize the effects of noise and drift from each sensor.

An algorithm for calculating the angle of inclination of the SPM platform was developed, where the final value of the angle of inclination is the sum of the integrated value of the gyroscope and the instantaneous value of the accelerometer. At each stage of integration, the integral of the angle of inclination is corrected using the readings of the accelerometer. An experimental verification of the effectiveness of the complementary filter was performed to identify the motion parameters of the elements of the spherical parallel mechanism.

References

Mahony R., Hamel T., Pflimlin J.-M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Transactions on Automatic Control. 2008. Vol. 53, no. 5. P. 1203–1218. DOI: 10.1109/TAC.2008.923738.

Madgwick S. O. H., Harrison A. J. L, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm. 2011 IEEE International Conference on Rehabilitation Robotics : proceedings, Zurich, Switzerland, 29 June–01 July 2011 / IEEE. 2011. P. 1–7. DOI: 10.1109/ICORR.2011.5975346.

Шмана К. С. Використання фільтрів Калмана та Маджвіка для обробки пока-зань гіроскопу та акселерометра. Новітні технології у науковій діяльності і навчальному процесі : матеріали тез доп. Всеукр. наук.- практ. конф. студентів, аспірантів та молодих учених, Чернігів, Україна, 10–11 Квітня 2019 / ЧНТУ. Чернігів, 2019. С. 85–87.

Gao W. et al. Adaptive Kalman Filtering with Recursive Noise Estimator for Integrated SINS/DVL Systems. Journal of Navigation. 2015. Vol. 68(1). P. 142–161. DOI: 10.1017/S0373463314000484.

Примушко А. М., Рижков Л. М. Дослідження комплементарного фільтра на МЕМС-вимірювачах. Інформаційні системи, механіка та керування. 2019. Вип. 20. С. 47–53.

Lebedenko Y. et al. Research of Control Systems for Robotic Spatial Planning Platforms. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES) : proceedings, Kremenchuk, Ukraine, 20–23 October 2022 / IEEE. 2022. P. 1–4. DOI: 10.1109/MEES58014.2022.10005765.

Published

2025-06-12

Issue

Section

Статті