ReliefF functional selection for traffic anomalies detection
DOI:
https://doi.org/10.18372/2073-4751.80.19779Keywords:
ReliefF, Random Forest, feature selection, traffic anomalies, network attacks, threat detection, NSL-KDDAbstract
This paper addresses the problem of network traffic anomaly detection using machine learning techniques and feature selection optimization. As modern computer networks become increasingly complex and data volumes grow, efficient threat detection requires fast and accurate traffic analysis algorithms. A major challenge lies in distinguishing normal network activity from potentially malicious attacks, which may be disguised as legitimate traffic.
The study explores the use of the ReliefF method for selecting key network traffic features and its impact on the performance of the Random Forest classification model. The focus is on optimizing feature selection to reduce computational costs and speed up training while preserving essential indicators of anomalous activity. Special attention is given to evaluating system performance under different feature selection scenarios, allowing for an optimal trade-off between accuracy and processing speed.
The proposed approach is designed for automated intrusion detection systems (IDS) operating in real-time, requiring rapid responses to potential threats such as DDoS attacks, port scanning, unauthorized access, and exploits. The research aims to enhance the efficiency of existing network traffic analysis methods and adapt feature selection algorithms for high-load network environments.
References
Singh I. et al. An improved Net-work Intrusion Detection System using a Novel Hybrid Genetic Coati-Pelican Opti-mization Algorithms with an Ensemble Fuzzy c-means and CNN-RF. 2024 Asia Pacific Conference on Innovation in Technology (APCIT) : proceedings, MYSORE, India, 26–27 July 2024 / IEEE. 2024. P. 1–8. DOI: 10.1109/APCIT62007.2024.10673641.
Alam M. S., Patel Y., Gurram Y. GMC-168 Hybrid Approach of Data Mining and Deep Learning for Network Intrusion Classification in Big Data. URL: https://digitalcommons.kennesaw.edu/cgi/viewcontent.cgi?article=1510&context=cday.
Jeyakarthic M., Selvakumar T. Hybrid Dynamic Kernel Neural Learning for Efficient Anomaly Detection. Wireless Sen-sor Networks. 2025. Vol. 12(1). P. 106–120. DOI: 10.22247/ijcna/2025/08.
Benmalek M., Seddiki A. Particle swarm optimization-enhanced machine learning and deep learning techniques for Internet of Things intrusion detection. Data Science and Management. 2025. URL: https://doi.org/10.1016/j.dsm.2025.02.005.
Ramezani R. et al. Bench to Bed-side: AI and Remote Patient Monitoring. Frontiers in Digital Health. 2025. Vol. 7. URL: https://doi.org/10.3389/fdgth.2025.
Ghantous M., ElHarras S., ElAas-ser M. Use of AI and Intelligent Algorithms. Lecture Notes in Networks and Systems. Vol. 1268. Intelligent Systems, Blockchain, and Communication Technologies. Selected Papers From the International Conference on Intelligent Systems, Blockchain, and Communication Technologies (ISBCom24) - Volume 1. Conference proceedings / ed. by A. Abdelgawad, A. Jamil, A. A. Hameed. 2025. P. 454–467.
Logeswari G. et al. An improved synergistic dual-layer feature selection algo-rithm with two type classifier for efficient intrusion detection in IoT environment. Sci-entific Reports. 2025. Vol. 15. 8050. URL: https://doi.org/10.1038/s41598-025-91663-z.
Pradeesh S., Jeyakarthic M., Thirumalairaj A. Enhanced Hybrid Ap-proach for Multi-Class DDoS Attack Detec-tion and Classification in Software-Defined Networks Using Remote Sensing and Data Analytics. Remote Sensing in Earth Systems Sciences. 2025. DOI: 10.1007/s41976-025-00204-9.
Ghimire A. et al. Enhancing Cy-bersecurity in Critical Infrastructure with LLM-Assisted Explainable IoT Systems. arXiv: 2503.03180. 2025. 5 p.
Ansar N. et al. A Robust Hybrid Rf-Bilstm Approach Reinforcing Iot Net-works Against Cyber Threats. URL: https://ssrn.com/abstract=5165735.
Chaudhary P., Singh A. K., Gupta B. B. Dynamic multiphase DDoS attack identification and mitigation framework to secure SDN-based fog-empowered consum-er IoT Networks. Computers and Electrical Engineering. 2025. Vol. 123, part C. 110226. DOI: 10.1016/j.compeleceng.2025.110226.
Karrothu A., Sriramakrishnan G. V., Jegdic K. Gazelle‐Dingo Optimization and Ensemble Classification: A Hybrid Ap-proach for Intrusion Detection in Fog Com-puting. Transactions on Emerging Telecom-munications Technologies. 2025. Vol. 36, iss. 3. 70084. DOI: 10.1002/ett.70084.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).