Routing method in wireless IoT networks with high device density

Authors

DOI:

https://doi.org/10.18372/2073-4751.80.19778

Keywords:

wireless network, Internet of Things, Poisson field, point process, route nodes, density, transmission rate

Abstract

This research is based on the assumption that in the immediate vicinity of the calculated coordinates are located transit nodes, which are located along a straight line connecting the initial and final nodes of the route. This assumption is valid for networks with a high density of nodes. For networks with a limited number of nodes, it is advisable to focus on solving the problem of determining the required number of nodes of the route based on the distances between them.

The proposed method reduces the use of network resources by selecting a near-optimal route, taking into account the influence of the transmission speed on the level of the useful signal power and interference from neighboring nodes on the route. For example, it allows you to increase the overall data transfer rate compared to the approach based on determining the shortest route based on the number of transit sections.

References

Khan R. et al. Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges. 2012 10th International Conference on Frontiers of Information Technology : proceedings, Islamabad, Pakistan, 17–19 December 2012 / IEEE. 2012. P. 257–260. DOI: 10.1109/FIT.2012.53.

Vlasenko M., Khlaponin Y. Internet of Things (IoT) in world practice: review and analysis. Pidvodni Tehnologii. 2024. Vol. 13. P. 21–27.

Заковоротний О. Ю., Штефан В. С. Організація мереж Інтернету речей високої щільності. Проблеми інформатизації : тези доп. 11-ї міжнар. наук.-техн. конф., 16-17 листопада 2023 р., м. Баку, м. Харків, м. Бельсько-Бяла. / Нац. ун-т оборони Азерб. республіки [та ін.]. Харків : Impress, 2023. С. 97.

Li T. et al. Performance analysis of IEEE 802.11e Block ACK scheme in a noisy channel. Proc. IEEE BroadNet. 2005. Vol. 1. P. 511–517.

Chumachenko S. et al. Traffic Analysis During Communication with UAV. 2024 IEEE 7th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD) : proceedings, Kyiv, Ukraine, 22–24 October 2024 / IEEE. 2024. P. 99–104. DOI: 10.1109/APUAVD64488.2024.10765914.

Чумаченко С. С. та ін. Модель інтернет мережі з урахуванням мережевого розташування. Проблеми інформатизації та управління. 2024. Вип. 2(78). С. 124–134.

Ian Poole. IEEE 802.11n Standard. URL: Radio-Electronics.com.

Корнієнко Б. Я. Дослідження моделі взаємодії відкритих систем з погляду інформаційної безпеки. Наукоємні технології. 2012. № 3(15). С. 83–89.

Чумаченко С. С. та ін. Моделювання М2М трафіку сучасних мереж зв’язку. Наукоємні технології. 2024. № 3(63). С. 390–400.

Kim Y., Evans R. G., Iversen W. M. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement. 2008. Vol. 57(7). P. 1379–1387.

Migel S. et al. Machine Learning Method for Optimal Route Calculation. 2023 IEEE 7th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) : proceedings, Kyiv, Ukraine, 24–27 October 2023 / IEEE. 2023. P. 168–173. DOI: 10.1109/MSNMC61017.2023.10329020.

Melnyk V., Honcharenko Y., Maloied M. Reliability Analysis of Radioelectronic Systems of Aircraft. Lecture Notes in Networks and Systems. Vol. 736. Proceedings of the International Workshop on Advances in Civil Aviation Systems Development / ed. by I. Ostroumov, M. Zalisky. 2023. P. 234–246.

Published

2025-03-13

Issue

Section

Статті