Method of exponentiation on Galois fields for fast implementation of cryptographic protection in IOT

Authors

DOI:

https://doi.org/10.18372/2073-4751.80.19767

Keywords:

multiplication operation on Galois fields, cryptographic algorithms based on Galois Fields algebra, Galois Fields exponentiation, Montgomery reduction

Abstract

A new organization for the exponent on Galois fields computing is proposed for the rapid implementation of cryptographic mechanisms for protection against external interference in the operation of remote control systems based on IoT technologies. The contraction of computation time is achieved by combining two multiplicative operations on Galois fields: squaring and multiplication by a constant number with the use of recalculations. The mathematical justification of the proposed method and numerical examples illustrating its operation are given.

Theoretical and experimental estimates of the effectiveness of the proposed method for accelerating the implementation of exponentiation on Galois fields were obtained: it was shown that it allows reducing the time of the corresponding calculations by 4.5 times compared to known methods.

References

Elgazzar K. et al. Revisiting the internet of things: New trends, opportunities and grand challenges. Frontiers in the Internet of Things. 2022. № 1. P. 1–18. DOI: 10.3389/friot.2022.1073780.

Unal D., Ali-Ali A., Catak F. O. A secure and efficient Internet of Things cloud encryption scheme with forensics investigation compatibility based on identity-based encryption. Future Generation Computer Systems. 2021. Vol. 125. P. 433–445. DOI: 10.1016/J.FUTURE.2021.06.050.

Borges J. et al. A Secure Cloud Computing Method for Rapid Implementation of Cryptographic Data Protection in IoT. 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT) : proceedings, Athens, Greece, 13–15 October 2023 / IEEE. 2023. P. 1–4. DOI: 10.1109/DESSERT61349.2023.10416477.

Марковский О. П., Аль-Мріят Гассан Абдель Жаліль. Метод прискореного модулярного множення для ефективної реалізації механізмів криптографічного захисту з відкритим ключом. Адаптивні системи автоматичного управління. 2024. Том. 1, № 44. С. 142–152. DOI: 10.20535/1560-8956.44.2024.302429.

Al-Mrayt Ghassan Abdel Jalil Halil, Markovskyi O., Stupak A. Оrganization of fast exponentiation on galois fields for cryptographic data protection systems. Information, Computing and Intelligent systems. 2022. № 3. P. 17–25. DOI: 10.20535/2708-4930.3.2022.265480.

Жолубак І. Аналіз алгоритмів множення в полях Галуа для криптографічного захисту інформації. Bulletin of the Lviv Polytechnic National University “Information systems and networks“. 2023. Вип. 13. C. 338–349. DOI: 10.23939/sisn2023.13.338.

Марковський О. П., Дайко І. В. Метод швидкого експоненціювання на полях Галуа для систем криптографічного захисту інформації. Проблеми інформатизації та управління. 2024. № 1 (77). С. 80–88. DOI: 10.18372/2073-4751.77.18660.

Daiko I., Selivanov V. Fast exponential method on Galois fields for cryptographic applications. 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT) : proceedings, Athens, Greece, 13–15 October 2023 / IEEE. 2023. P. 1–4. DOI: 10.1109/DESSERT61349.2023.10416519.

Wu K., Wei G. Optimized Design of ECC Point Multiplication Algorithm Over GF(2m). 2019 International Conference on Electronic Engineering and Informatics (EEI) : proceedings, Nanjing, China, 08–10 November 2019 / IEEE. 2019. P. 420–425. DOI: 10.1109/EEI48997.2019.00097.

Osadchyy V. The Order of Edwards and Montgomery Curve. WSEAS Transactions on Mathematics. 2020. Vol. 19, № 25. P. 253–264.

Li Y. A tile assembly model to calculate point-multiplication on conic curves over finite field GF(2n). 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) : proceedings, Exeter, United Kingdom, 17–19 December 2020 / IEEE. 2020. P. 41–48. DOI: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00032.

Fitzpatrick P., Popovici E. M. Algorithm and Architecture for a Galois Fiels multiplicative Arithmetic Processor. IEEE Trans. on Information Theory. 2003. Vol. 49, № 12. Р. 3303–3307.

Zhang C., Chen C., Wu H. Area-Efficient Finite Field Multiplication in GF(2n) Using SingleElectron Transistors. 2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS) : proceedings, Penang, Malaysia, 22–26 November 2021 / IEEE. 2021. P. 25–28. DOI: 10.1109/APCCAS51387.2021.9687675.

Elfard S. Justification of Montgomery Modular Reductions. Advanced Computing. 2012. № 11. P. 41–45.

Published

2025-03-13

Issue

Section

Статті