Internet network model with account of network location
DOI:
https://doi.org/10.18372/2073-4751.78.18970Keywords:
network structure, Internet of Things, signal attenuation by interference, signal/noise ratio, rectangular lattice, percolation, graph theory, simulation modelingAbstract
The purpose of this research is to prove the usefulness of the conclusions of the percolation theory for the assessment of the connectivity of the Internet of Things network. The probability that there is a route between two pairs of nodes determines the connectivity of the network. When this probability approaches unity, the network is considered connected. For example, finding the shortest paths between all pairs of nodes (the vertices of the graph describing the network) can be used to assess connectivity in a particular situation. Two reasons make this problem difficult to solve. First, the computational resource required for this grows proportionally to n3, where n is the number of vertices of the graph. Second, existing analytical approaches are usually focused on specific cases rather than on a large number of nodes.
The article proposes a network model in the form of a lattice, which serves as a logical basis for structuring connections between nodes located in different rooms. The shape of the grid is controlled by the layout of the building. The obtained model makes it possible to evaluate the efficiency of the communication channel using the estimation of the PSP and the general ratio of the SS for the nodes of the network. The use of the model allows us to confidently state that in a modern multi-story structure, if the nodes are strategically placed in each room, it is quite possible to create a wireless communication network. In addition, the quality of the radio channel allows you to use data transfer rates that meet the highest standards of modern technologies.
References
Perera, C. et al. Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials. 2014. Vol. 16(1). P. 414–454.
Wang X. et al. Multipath TCP: Topology and Performance in High-Density IoT. IEEE Communications Magazine. 2015. Vol. 53(12). P. 140–147.
Bielsa G., Jukan A., Vujicic B. Wireless Network Modeling: From Delay to Performance Prediction. IEEE Communications Magazine. 2017. Vol. 55(10). P. 30–36.
Rangan S., Krishnan K., Goyal V. K. Millimeter-Wave Wireless Networks: A Survey. IEEE Communications Magazine. 2014. Vol. 52(12). P. 56–63.
Bianchi G., Tinnirello I. IEEE 802.11ac in the Unlicensed Band: A Survey on Its Coexistence with IEEE 802.11af. IEEE Communications Surveys & Tutorials. 2017. Vol. 19(2). P. 757–794.
Mehta N. B., Patel N. P., Shah M. A Survey on Channel Bonding Techniques in Wireless Networks. IEEE Communications Surveys & Tutorials. 2016. Vol. 18(3). P. 1948–1973.
Zhang C. et al. A Survey on Software-Defined Wireless Networking. IEEE Communications Surveys & Tutorials. 2015. Vol. 17(1). P. 559–580.
Cui T., Zhang R., Cui J. H. A Survey on Indoor Localization with Wireless Local Area Networks. IEEE Communications Surveys & Tutorials. 2014. Vol. 16(1). P. 10–27.
Chen M. et al. Internet of Things (IoT) and Its Applications in Smart Agriculture. IEEE Access. 2017. Vol. 5. P. 16241–16258.
Duan L., Chen C., Xie X. A Survey on Data Center Networking for Cloud Computing. IEEE Communications Surveys & Tutorials. 2017. Vol. 19(2). P. 1157–1179.
Goldsmith A. Wireless Communications. Cambridge : University Press, 2005. 250 p.
Tse D., Viswanath P. Fundamentals of Wireless Communication. Cambridge : University Press, 2005. 564 p.
Baccarelli E. et al. Optimal and energy-efficient distribution of virtual machines for cloud computing. Future Generation Computer Systems. 2011. Vol. 28(1). P. 147–154.
Akyildiz I. F., Wang X. Wireless Mesh Networks. Chichester : John Wiley & Sons, 2009. 324 p.
Stauffer D., Aharony A. Introduction to Percolation Theory. Rev., 2nd ed. London : Taylor & Francis, 1994. 181 p.
Sahimi M. Applications of Percolation Theory. London : Taylor & Francis, 1994. 258 p.
Grimmett G. Percolation. 2nd ed. Berlin : Springer, 1999. 444 p.
Broadbent S. R., Hammersley J. M. Percolation processes: I. Crystals and mazes. Mathematical Proceedings of the Cambridge Philosophical Society. 1957. Vol. 53(3). P. 629–641.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).