Multi-model data representation for ontology-driven decision-making

Authors

DOI:

https://doi.org/10.18372/2073-4751.77.18667

Keywords:

decision-support system, decision-making, ontology, multi-model data management, polyglot persistence

Abstract

Nowadays ontology-driven decision-making is the result of the combination and integration of knowledge and data of different nature and purpose, solving multiple interconnected decision-making problems, synthesizing different points of view on the problem and the decision-making process. For many decision-making problems, the use of only one data model, usually a relational one, is not enough. Today, to solve the problem of "diversity" of data, the concept of multi-model data management is used. Modern aspects of decision-making based on the use of ontologies as a tool of understanding and presentation of decision-making areas and processes, which integrates the methods of system, process and situational analysis are discusses. The possible types of data representations (models) that are necessary for the implementation of ontology-guided decision-making, and also defines the corresponding types of information are defined. In the work, polyglot persistence storage, multi-model storage and cloud-based storage were considered and analyzed for the implementation of multi-model data management. The conclusion is made about the choice of multi-variant storage as a means of multi-model presentation of data within the framework of projects carried out by the authors of the article. The selected software tools for implementing the defined multi-model data representation are described.

References

Jiaheng L., Holubova I. Multi-model Databases: A New Journey to Handle the Variety of Data. ACM Computing Surveys. 2019. Vol. 52. P. 1–38.

Fowler M., Sadalage P. J. NoSQL DISTILLED. A Brief Guide to the Emerging World of Polyglot Persistence. 1st ed. Crawfordsville : Addison-Wesley Professional, 2012. 192 p.

Liu Z. H. et al. Multi-Model Database Management Systems – a Look Forward. Lecture Notes in Computer Science. Vol. 11470. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. VLDB 2018 Workshops, Poly and DMAH Rio de Janeiro, Brazil, August 31, 2018 Revised Selected Papers / ed. by V. Gadepally et al. Cham, 2019. P. 16–29.

Чаплінський Ю. П. Онтологічні складові підтримки прийняття управлінських рішень. Наукові праці НУХТ. 2013. № 48. С. 65–68.

Чаплінський Ю. П., Субботіна О. В. Онтологія та контекст при розв’язанні прикладних задач прийняття рішень. Штучний інтелект. 2016. № 2. С. 147–155.

Чаплінський Ю. П. Контекстно-онтологічна системна оптимізація проблемно-орієнтованої підтримки прийняття рішень. Нові інформаційні технології, моделювання та автоматизація : монографія / за заг. ред. С. В. Котлика. Одеса, 2022. С. 6 – 44.

Neu W. et al. An Introduction to Cloud Databases. 1st ed. Sebastopol : O'Reilly Media, Inc., 2019. 48 p.

Hoffer J. A., Ramesh V., Topi H. Modern database management. 13th ed. Harlow : Pearson, 2019. 600 p.

Bradshaw S., Eoin B., Chodorow K. MongoDB: The Definitive Guide. 3rd ed. Sebastopol : O'Reilly Media, Inc, 2019. 511 p.

Published

2024-04-01

Issue

Section

Статті