Recognition of fake news using natural language processing and a low-power architecture for edge computing
DOI:
https://doi.org/10.18372/2073-4751.76.18241Keywords:
fake news, natural language processing (NLP), contextual analysis, attention mechanism, edge computing, low-power architectureAbstract
The research focuses on enhancing the method of fake news detection based on natural language processing (NLP) utilising low-power edge computing architecture through attention mechanisms and contextual analysis. An attention mechanism and contextual analysis are implemented to detect linguistic signs of credibility and stylistic differences between fake and real news. This approach aims to enable news verification on peripheral devices with limited computational resources without compromising speed.
Experimental studies validate the efficiency of the proposed method in identifying anomalies in text frequency and credibility markers. Fake news is identified by the higher use of emotionally charged words, probative statements and profanity compared to real news.
The integration of attention mechanisms and contextual analysis showcases a notable improvement in identifying linguistic anomalies typical of fake news, achieving a classification accuracy of 81%. The findings contribute to combating misinformation by leveraging linguistic nuances and signify potential advancements in news veracity assessment on resource-constrained devices.
References
Shu K., Sliva A., Wang S., Tang J., Liu H. Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter. 2017. V. 19(1). P. 22–36.
Zhou X., Jain A., Phoha V.V., Zafarani R. Fake news early detection: A theory-driven model. Digital Threats: Research and Practice. 2020. V. 1(2). P. 1–25.
Zhou X., Zafarani R. A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM Computing Surveys (CSUR). 2020. V. 53(5). P. 1–40.
Schmidt A., Wiegand M. A survey on hate speech detection using natural language processing. Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media / Valencia, Spain, 2017. P. 1–10.
Przybyla P. Capturing the style of fake news. Proceedings of the AAAI conference on artificial intelligence. V. 34, No. 01. 2020. P. 490–497.
Zhang C., Gupta A., Qin X., Zhou Y. A computational approach for real-time detection of fake news. Expert Systems with Applications. 2023. V. 221. 119656.
Vaswani A., et al. Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS 2017) / Long Beach, USA, 2017. 11 p.
Mishchenko L., Klymenko I. Method for Detecting Fake News Based on Natural Language Processing. The VI International Scientific and Practical Conference «Modern ways of solving the problems of science in the world» / Warsaw, Poland, 2023. P. 375–378.
Alammary, A.S. Arabic questions classification using modified TF-IDF. IEEE Access. 2021. V. 9. P. 95109–95122.
Pathak A., Srihari R.K. BREAKING! presenting fake news corpus for automated fact checking. Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop / Florence, Italy, 2019. P. 357–362.
Almandouh M.E., Alrahmawy M. F., Eisa M., Tolba A.S. Ensemble Based Low Complexity Arabic Fake News Detection. International Journal of Intelligent Systems and Applications in Engineering. 2023. V. 11(2). P. 1022–1031.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).