Models of the topologies for the weak-emitting telecommunication system of interacting UAVs

Authors

DOI:

https://doi.org/10.18372/2073-4751.72.17461

Keywords:

computer network, unmanned aerial vehicles, security, multicriteria, electromagnetic emitting, traveling salesman's problem, minimum spanning tree, IEEE 802.x, ITU X.25

Abstract

In this opus there are offered the normative models of the topologies for the telecommunication system of interacting UAVs, using of which (models) will allow to determine the parameters of topologies that (indirectly) increase the probability to perform by the unmanned aerial vehicles the main function due to minimization of the UAVs swarm unmasking probability during the interaction period. In the modeling, it was made an assumption about the minimization of the unmasking probability which is achieved solely due to the minimization of the channel-forming receiving and transmitting equipment total power. Analysis of the proposed models will allow the use of well-known resource-saving hardware and software tools (such as those described in the IEEE 802.15.1 recommendations, as well as 802.3, 802.4, 802.5, ITU X.25), suitable to use in calculated topologies for the weak-emitting telecommunication systems of interacting UAVs. The emerging criterion uncertainty is solved by the classic method to identify the main criterion, which is chosen as the minimum total power of the channel-forming receiving and transmitting equipment, with forming the criteria restrictions. The weighted graph connectivity degree, modeling the relationship in the wireless data transmission system, was used as the control values of the integration level. The introduction of an assumptions number made it possible to use the classical models of the traveling salesman task and finding the shortest connecting tree in a weighted graph, the methods of analysis for which were found in the integer programming class with additional logical conditions.

References

Internetworking Technologies Handbook. – [Forth Edition]. – Cisco Systems, et. al. – Cisco Press, 2005. – 1040 p.

Жуков І.А., Печурін М.К., Кондратова Л.П., Печурін С.М. Розподіл ресурсів в обчислювальному кластері для БПЛА // Проблеми інформатизації та управління: зб. наук. праць. – 2016. – Вип.3 (55). – С. 34-38.

IEEE Standard for Information technology. Telecommunications and information exchange between systems. Local and metropolitan area networks. Specific requirements. Part 15.1: Wireless medium access control (MAC)and physical layer (PHY) specifications for wireless personal area networks (WPANs). IEEE Computer Society, 14 June 2005. URL: http://standards.ieee.org/getieee802/download/802.15.1-2005.pdf.

Roshan P., Leary J. 802.11 Wireless LAN Fundamentals. – M.: Publishing house "Williams", 2004. – 304 p.

Sineglazov V., Chumachenko O., Gorbatiuk V. Forecasting aircraft miles flown time series using a deep learning-based hybrid approach // Aviation. – 2018. – Issue 22. – No. 1. – P. 6-12.

Little J.D.C., Murrty K.G., Sweeney D.W., Karel C. An algorithm for the travelling salesmen problem // Operation Resoutce. – 1963. – Vol.11. – No. 6.

Чемерис О.А., Сушко С.В. Методи штучного інтелекту при оптимізації роботи мікропроцесорних систем // Комп’ютерні системи та мережні технології: тези доповідей ХІІ Міжнародної науково-практичної конференції CSNT-2019, Київ, 28–30 березня 2019 року. – К., 2019. – С. 127-129.

Taylor G., Burmeister R., Xu Z., Singh B., Patel A., Goldstein T. Training neural networks without gradients: A scalable admm approach. arXiv:1605.02026v1, 2016.

Боярінова Ю.Є., Воронін М.Г. Ефективний спосіб організації телекомунікацій в спеціалізованій комп’ютерній мережі рухомих об’єктів // Прикладна математика та комп‘ютинг: збірник тез доповідей XV наукової конференції молодих вчених ПМК-2022, Київ, 16-18 листопада 2022. – С. 209-213.

Published

2022-12-15

Issue

Section

Статті