THE INFLUENCE OF NEURAL NETWORKS ON THE DEVELOPMENT OF CYBER SECURITY IN THE CONDITIONS OF REGULATORY CHANGES

Authors

DOI:

https://doi.org/10.18372/2225-5036.30.19238

Keywords:

neural networks, cybersecurity, artificial intelligence, cyberattacks, system vulnerabilities, regulatory standards

Abstract

The article studies the influence of neural networks on the development of cybersecurity in conditions of constant changes in the regulatory field. In today's digital world, where the complexity and frequency of cyber attacks are growing rapidly, traditional security methods are becoming insufficient. Neural networks, as one of the key technologies of artificial intelligence, open up new opportunities for improving the efficiency of cyber defense systems by automating threat detection, anomaly analysis and attack prevention. The integration of neural networks with other emerging technologies, such as blockchain and quantum computing, opens up new horizons for creating more sustainable systems. However, challenges such as adversarial attacks, opacity of algorithms (the "black box" problem) and compliance with regulatory requirements, in particular GDPR and ISO 27001, require special attention. The study also examines the ethical and legal aspects of using neural networks in cybersecurity, emphasizing the importance of developing explanatory artificial intelligence (XAI) and maintaining human control for safe and ethical implementation. The article concludes that neural networks are a promising tool in the fight against cyber threats, but their effectiveness will depend on the ability of organizations and states to solve privacy problems, ethical issues and technical vulnerabilities.

References

Adebunmi, O., Adewusi, U., Okoli, T., Ejuma, A., Donald, O. Artificial intelligence in cybersecurity: Protecting national infrastructure: A USA review. World Journal Of Advanced Research and Reviews, 2024. doi: 10.30574/wjarr.2024.21.1.0313.

AI Risk Management Framework. NIST. URL: https://www.nist.gov/itl/ai-risk-management-framework (дата звернення: 21.09.2024).

Artificial Intelligence Act: MEPs adopt landmark law. European Parliament. URL: https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law (date of access: 21.09.2024).

Brown, T. B., et al. Language models are few-shot learners. Advances in Neural Information Processing Systems, 2020.

Cybercrime to cost the world $10.5 trillion annually by 2025. Cybercrime Magazine. URL: https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/ (дата звернення: 21.09.2024).

EU data protection rules. European Commission. URL: https://commission.europa.eu/law/law-topic/data-protection/eu-data-protection-rules_en (дата звернення: 21.09.2024).

Hansen, R., Venables, P. Introducing Google’s Secure AI Framework. Google. URL: https://blog.google/technology/safety-security/introducing-googles-secure-ai-framework/ (дата звернення: 21.09.2024).

ISO/IEC 27032 cybersecurity guideline. ISO 27001 information security standards. URL: https://www.iso27001security.com/html/27032.html (дата звернення: 21.09.2024).NIS directive. ENISA. URL: https://www.enisa.europa.eu/topics/cybersecurity-policy/nis-directive-new (дата звернення: 21.09.2024).

Palani, K., Kethar, J., Prasad, S., Torremocha, V. Impact of AI and Generative AI in transforming Cybersecurity. J Stud Res, 2024, 13(2), May.

Regulation - 2016/679 - EN - GDPR - EUR-Lex. EUR-Lex – Access to European Union law – choose your language. URL: https://eur-lex.europa.eu/eli/reg/2016/679/oj (дата звернення: 21.09.2024).

Shevchuk, R., Martsenyuk, V. Neural Networks Toward Cybersecurity: Domain Map Analysis of State-of-the-Art Challenges. IEEE Access, 2024, 12, 81265-81280. doi: 10.1109/ACCESS.2024.3411632.

Ssetimba, I. D., Kato, J., Othieno, P. E., Twineamatsiko, E., Nakayenga, H. N., Muhangi, E. Advancing electronic communication Compliance and fraud detection Through Machine Learning, NLP and generative AI: A Pathway to Enhanced Cybersecurity and Regulatory Adherence. World Journal Of Advanced Research and Reviews, 2024, 23(2), 697-707. doi: 10.30574/wjarr.2024.23.2.2364.

Suman, Kashyap. The Influence of Artificial Intelligence on Cybersecurity. International Journal of Innovative Research in Computer and Communication Engineering, 2024. doi: 10.15680/ijircce.2024.1203503.

Thapaliya, S. Examining the Influence of AI-Driven Cybersecurity in Financial Sector Management. The Batuk, 2024, 10(2), 129-144. doi: 10.3126/batuk.v10i2.68147.

What is Attention Mechanism?. H2O.ai | Convergence of The World's Best Predictive & Generative AI. URL: https://h2o.ai/wiki/attention-mechanism/ (дата звернення: 21.09.2024).

Zharama, M., Llarena. Code development of regulatory technology for legitimacy of cybersecurity adjudication. International journal of political science and governance, 2022, 4(1), 06-09. doi: 10.33545/26646021.2022.v4.i1a.126.

Регулювання штучного інтелекту. Стандарт ISO/IEC 42001:2023 - AIN. Інтернет-бізнес в Україні. URL: https://ain.ua/2024/04/04/regulyuvannya-shtuchnogo-intelektu-standart-iso-iec-420012023/ (дата звернення: 21.09.2024).

Шевченко, А., Застело, Г., Шпачинський, Є. Аналіз застосування методів машинного навчання на основі штучних нейронних мереж для виявлення кіберзагроз. 2019, 7(1), 79-90. doi: 10.20535/2411-1031.2019.7.1.184327.

Published

2024-12-03

Issue

Section

Cybersecurity & Critical Information Infrastructure Protection (CIIP)