CRITICAL REVIEW OF AUTOMATIC IDENTIFICATION METHODS OF MUSICAL WORKS
Keywords:
Music automatic identification, an object-oriented format, system expertise, converting audio information.Abstract
The aim of this article is both introduction to the one of the fundamental branches of audio signal processing and overview of automatic control systems (ACS) with brief description, which operate in this subject field.References
Klapuri A. Signal Processing Methods for Music Transcription / A. Klapuri, M. Davy. — Springer, New York, 2006.
Martin, K. D. Automatic Transcription of Simple Polyphonic Music / K. D. Martin // Computer Music Journal. — 2002. — No 1(7).
Ellis, D. Extracting Information from Music Audio / D. Ellis // LabROSA, Dept. of Electrical Engineering Columbia University, NY, March 15, 2006.
Фадеев, А. С. Идентификация музыкальных объектов на основе непрерывного вейвлет-преобразования / А. С. Фадеев // Диссертация. — Томский политехнический университет. — 2008.
Every, M. Separation of musical sources and structure from single-channel polyphonic recordings / M. Every // PhD thesis. — Department of Electronics. — University of York. — 2006.
Maher, R. C. Development and evaluation of a method for the separation of musical duet signals / R. C. Maher // Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, NY, Mohonk,
October, 1989. — P. 1 — 3.
Emiya, V. Automatic transcription of piano music based on HMM tracking of jointly-estimated pitches / V. Emiya, R. Badeau, B. David // Proc. Int. Conf. Audio, Speech and Signal Processing (ICASSP). — 2009.
Kashino, K. Music recognition using note transition context / K. Kashino, H. Murase // Proc. of the 1998 IEEE ICASSP. Seattle. 1998.
Fujishima, T. Realtime Chord Recognition of Musical Sound: a System Using Common Lisp Music / T. Fujishima // Proc. of the International Computer Music Conference, Beijing: International Computer Music Association, China, 1999. — P. 464 — 467.
Klapuri, A. Musical meter estimation and music transcription / A. Klapuri // Proc. of the Cambridge Music Processing Colloquium, Cambridge University, UK, 2003.
Emiya, V. Multipitch Estimation of Quasi-Harmonic Sounds in Colored Noise / V. Emiya, R. Badeau, B. David // Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, 2007. — P. 93 — 98.
Eggink, J. Instrument recognition in accompanied sonatas and concertos / J. Eggink, G. J. Brown // Proc. of IEEE Int. Conf. on Audio, Speech and Signal Processing (ICASSP). — V-4. — 2004. P.: IV-217 — IV-220.
Martin, K. D. A blackboard system for automatic transcription of simple polyphonic music / K. D. Martin // Technical Report #385, MIT Media Lab, Perceptual Computing Section, July, 1996.
Bello, J. Blackboard system and top-down processing for the transcription of simple polyphonic music / J. Bello, M. Sandler // Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000.
Chafe, C. Source separation and note identification in polyphonic music / C. Chafe, D. Jaffe // Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP. Apos 86. — V. 11, 1986. — P. 1289 — 1292.
Chien, Y. An Automatic Transcription System with Octave Detection / Y. Chien, S. Jeng // National Taiwan University, Graduate Institute of Communication Engineering and Department of Electrical Engineering, Taipei, 2002.
Livingston, J. Musical Instrument Identification using wavelets and Neural Networks / J. Livingston, N. Shepard // The University of Texas at Austin. — Austin, Texas, USA, 2005. — 20 p.