GENETIC FUZZY LEARNING SYSTEMS BASED ON RULES

Authors

  • Наталія Анатоліївна Новосьолова Bioinformatic Department of the United Institute of Informatic Problems of the National Academy, of Sciences of Belarus
  • Ігор Едуардович Том Bioinformatic Department of the United Institute of Informatic Problems of the National Academy, of Sciences of Belarus

Keywords:

Fuzzy system, the knowledge base, the genetic learning

Abstract

The paper presents the general scheme of the evolutionary learning of the rule-based fuzzy systems, where the genetic procedures are used for the learning and tuning the different system components. Several schemes for the genetic tuning of the data base, genetic learning of the rule base and two variants for the fuzzy system’ knowledge-base learning are proposed. The problem of the interpretability of the fuzzy system is considered.

Author Biographies

Наталія Анатоліївна Новосьолова, Bioinformatic Department of the United Institute of Informatic Problems of the National Academy, of Sciences of Belarus

Ph.D., Senior Researcher of the Bioinformatic Department of the United Institute of Informatic Problems of the National Academy, of Sciences of Belarus

Ігор Едуардович Том, Bioinformatic Department of the United Institute of Informatic Problems of the National Academy, of Sciences of Belarus

Ph.D., a Head of the Bioinformatic Department of the United Institute of Informatic Problems of the National Academy, of Sciences of Belarus

References

Konar, A. Computational Intelligence: Principles, Techniques and Applications / A. Konar. – Springer-Verlag, 2005.

Cordón, O. Genetic Fuzzy Systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases / O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena. - World Scientific, 2001.

Mitra, S. Data Mining. Multimedia, Soft Computing and Bioinformatics / S. Mitra, T. Acharya. – John Wiley&Sons: – New Jersey, Canada, 2003/ – 401 p.

Pedrycz, W. Fuzzy Modelling: Paradigms and Practice / W. Pedrycz (Ed.) - Kluwer Academic Press, Dordrecht, 1996.

Driankov, D. An Introduction to Fuzzy Control / D. Driankov, H. Hellendoorn, M. Reinfrank. - Springer, Berlin, 1993.

Том И.Э. Методы интеллектуального анализа многомерных данных для решения задач классификации/ ТомИ.Э., Н.А. Новоселова, О.В. Красько. – Минск: ОИПИ НАН Беларуси, 2011. – 236 с.

Новоселова, Н.А. Эволюционный подход к выделению информативных признаков в задачах анализа медицинских данных /Н.А. Новоселова, И.Э. Том, А.С. Мастыкин // Искусственный интеллект – 2008.- №3. – С. 105-112.

Новоселова, Н.А Эволюционный метод нечеткой кластеризации /Н.А. Новоселова, И.Э. Том // Информатика. - 2009. № 3 (23) - С. 55-67.

Новоселова, Н.А. Подход к построению ансамбля классификаторов с использованием генетического алгоритма / Н.А. Новоселова, И.Э. Том // Искусственный интеллект - 2009. - № 3. - C. 81-88.

Cordon, O. Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases / O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena. - World Scientific, Singapore, 2001.

De Jong, K.A. Using genetic algorithms for concept learning / K.A. De Jong, W.M. Spears, D.F. Gordon // Machine Learning. – 1993. – Vol. 13. – P. 161–188.

Kovacs, T. Strength or Accuracy: Credit Assignment in Learning Classifier Systems / T. Kovacs. - Springer-Verlag, 2004.

Cordón, O. MOGUL: A Methodology to Obtain Genetic fuzzy rule-based systems under the iterative rule Learning approach / O. Cordón, M.J. del Jesús, F. Herrera, M. Lozano // International Journal of Intelligent Systems. -1999. – Vol. 14. - P. 1123-1153.

González, A. SLAVE: A genetic learning system based on an iterative approach / A. González, R. Pérez // IEEE Transactions on Fuzzy Systems. – 1999. - Vol. 27. – P. 176-191.

Wong, M.L. Data Mining using Grammar Based Genetic Programming and Applications / M.L. Wong, K.S. Leung. – Kluwer Academics Publishers, 2000.

Setnes, M. GA-fuzzy modeling and classification: Complexity and performance / M. Setnes, J.A. Roubos // IEEE Transactions on Fuzzy Systems. -2000. – Vol. 8, №5. – P. 509–522.

Setnes, M. Fuzzy relational classifier trained by fuzzy clustering / M. Setnes, R. Babuska // IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics. – 1999. – Vol. 29. – P. 619–625.

Roubos, J. A. Compact and transparent fuzzy models and classifiers through iterative complexity reduction / J. A. Roubos, M. Setnes // IEEE Trans. on Fuzzy Systems. – 2001. – Vol. 9, №4. – P. 516-524.

Setnes, M. Similarity measures in fuzzy rule base simplification / M. Setnes, R. Babuˇska, U. Kaymak, and H. R. van Nauta Lemke // IEEE Trans. Systems, Man and Cybernetics - Part B. – 1998. - Vol. 28. - P. 376–386.

Elomaa, T. General and Efficient Multisplitting of Numerical Attributes / T. Elomaa, J. Rousu // Machine Learning. – 1999. – Vol. 36, № 3. – P. 201–244.

Abonyi, J. Data-driven Generation of Compact, Accurate, and Linguistically-sound Fuzzy Classifiers Based on a Decision-tree Initialization / J. Abonyi, J. Roubos, F. Szeifert // Intern. J. of Approximate Reasoning. – 2003. – Vol. 32, № 1. – P. 1–21.

Pena-Reyes C.A. A Fuzzy-genetic Approach to Breast Cancer Diagnosis / C.A. Pena- Reyes, M. Sipper // Artificial Intelligence in Medicine. – 1999. – Vol. 17, № 2. – P. 131–135.

Guan, S.-U. Class Decomposition for GAbased Classifier Agents – A Pitt Approach / S.-U. Guan, F. Zhu // IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics. – 2004. – Vol. 34, № 1. – P. 381–392.

Ishibuchi, H. Multi-objective Evolutionary Design of Fuzzy Rule-based Systems / H. 25 Ishibuchi, T. Yamamoto // Proc. of Intern. Conf. on Systems, Man and Cybernetics (IEEE SMC 2004). The Hague, The Netherlands, Oct. 10-13, 2004. – Madison, Wisconsin : Omni Press, 2004. – Vol. 3. – P. 2362–2367.

Published

2012-12-10

Issue

Section

DATABASES AND SOFTWARE ENGINEERING