Система генерації траєкторії безпілотних літальних апаратів у реальному часі
DOI:
https://doi.org/10.18372/1990-5548.82.19379Ключові слова:
генерація траєкторії в реальному часі, AirSim, безпілотні літальні апарати, платформа автопілота PX4, R-CNN, QGroundControlАнотація
У роботі розглянуто проблему створення траєкторії в реальному часі для безпілотних літальних апаратів, підкреслюючи її важливість для різних застосувань, таких як пошуково-рятувальні операції, моніторинг навколишнього середовища та точне землеробство. Аналізуються проблеми, пов’язані з формуванням динамічної траєкторії, включаючи уникнення перешкод, дотримання обмежень місії та ефективність обчислень. Пропонується гібридний підхід, який об’єднує розширені алгоритми планування шляху з методами оптимізації в реальному часі для забезпечення безпечної та ефективної навігації безпілотних літальних апаратів в складних середовищах. Система використовує бортові датчики та зовнішні джерела даних, такі як GPS і LiDAR, для визначення ситуації та динамічного виявлення перешкод. Ключовою особливістю запропонованої системи є здатність адаптувати траєкторію у відповідь на зміни навколишнього середовища в реальному часі, забезпечуючи міцність і надійність під час автономного польоту. У реалізації використовується платформа автопілота PX4, середовище моделювання AirSim і програмне забезпечення QGroundControl для перевірки ефективності запропонованого підходу. Результати демонструють, що система досягає балансу між обчислювальною ефективністю та точністю траєкторії, що дозволяє її розгортати в практичних застосуваннях безпілотних літальних апаратів.
Посилання
A. Richards, & J. P. How, “Aircraft trajectory planning with collision avoidance using mixed integer linear programming,” American Control Conference, 2002, pp. 1936–1941. https://doi.org/10.1109/ACC.2002.1023918
E. Altug, J. P. Ostrowski, & C. J. Taylor, “Control of a quadrotor helicopter using visual feedback,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2003, pp. 72–77. https://doi.org/10.1109/ROBOT.2002.1013341
C. Goerzen, Z. Kong, & B. Mettler, “A survey of motion planning algorithms from the perspective of autonomous UAV guidance,” Journal of Intelligent & Robotic Systems, 57(1-4), pp. 65–100, 2010. https://doi.org/10.1007/s10846-009-9383-1
M. Achtelik, A. Bachrach,, R. He, S. Prentice, & N. Roy, “Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments,” Proceedings of the International Symposium on Experimental Robotics (ISER), 2009, pp. 305–314. https://doi.org/10.1117/12.819082
T. T. Mac, C. Copot, D. T. Tran, & R. De Keyser, “Heuristic approaches in robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp. 13–28, 2016. https://doi.org/10.1016/j.robot.2016.08.001
D. Lee, & H. Park, “Dynamic path planning and re-planning for UAVs in uncertain environments,” Journal of Advanced Transportation, 2018, Article ID 3025869.
G. Zhang, & V. Kumar, “Real-time trajectory generation and control for quadrotors in dynamic environments,” Autonomous Robots, 35(2-3), pp. 175–188, 2013.
D. Scaramuzza, M. W. Achtelik, L. Doitsidis, F. Friedrich, E. B. Kosmatopoulos, A. Martinelli, ... & R. Siegwart, “Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments,” IEEE Robotics & Automation Magazine, 21(3), 2014, pp. 26–40. https://doi.org/10.1109/MRA.2014.2322295
S. S. Ponda, J. Redding, K. Chandresekharan, S. Avadhanula, & J. P. How, “Decentralized planning for complex missions with dynamic communication constraints,” American Control Conference (ACC), 2010, pp. 3998–4003. https://doi.org/10.1109/ACC.2010.5531232
S. A. Scherer, S. Singh, L. Chamberlain, & M. Elgersma, “Flying fast and low among obstacles: Methodology and experiments,” The International Journal of Robotics Research, 27(5), pp. 549–574, 2008. https://doi.org/10.1177/0278364908090949
N. Michael, D. Mellinger, Q. Lindsey, & V. Kumar, “The GRASP multiple micro-UAV testbed,” IEEE Robotics & Automation Magazine, 17(3), 2010, pp. 56–65. https://doi.org/10.1109/MRA.2010.937855
Y. Park, & Y. Choi, “UAV collision avoidance based on deep reinforcement learning and local path planning,” 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 885–890.
J. Kim, D. H. Shim, & S. Sastry, “Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles,” Proceedings of the 2002 American Control Conference, 2002, pp. 3576–3581. https://doi.org/10.1109/ACC.2002.1024483
Y. Zeng, R. Zhang, & T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Communications Magazine, 54(5), pp. 36–42, 2016. https://doi.org/10.1109/MCOM.2016.7470933
A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bülthoff, & P. R. Giordano, “Modeling and control of UAV bearing-formations with bilateral high-level steering,” The International Journal of Robotics Research, 31(12), pp. 1504–1525, 2012. https://doi.org/10.1177/0278364912462493
S. Jansen, F. Stumpf, & F. Ritzinger, “Optimal path planning for UAVs in dynamic environments using an extended rapidly exploring random tree algorithm,” International Conference on Automation Science and Engineering (CASE), 2018, pp. 1003–1009.
W. Koch, J. Marks, M. Witte, T. Alberts, C. Gierull, & C. Hoffmann, “Multistatic UAV-based SAR: A concept for cooperative SAR mission execution,” IEEE Transactions on Aerospace and Electronic Systems, 54(2), 2018, pp. 681–693.
A. Hussein, A. Al-Naji, & B. Mahmmod, “A real-time vision-based UAV guidance system for autonomous landing on moving platforms,” Robotics and Autonomous Systems, vol. 114, pp. 91–105, 2019.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).