Формування навчальної вибірки для налаштування згорткових нейронних мереж
DOI:
https://doi.org/10.18372/1990-5548.66.15225Ключові слова:
Згорткові нейронні мережі, штучне розмноження даних, малоінформативні дані, інтелектуальні медичні системиАнотація
Розглянуто задачу формування навчальної вибірки для налаштування згорткових мереж, що має велике значення при побудові інтелектуальних медичних систем діагностики в яких для обробки зображень використовуються результати УЗД, КТ та МРТ. У зв’язку з нестачею елементів навчальної вибірки запропоновано використовувати підходи штучного розмноження даних на основі вихідної навчальної вибірки фіксованого обсягу. Показано, що в результаті такого збільшення обсягу навчальної вибірки в неї можуть потрапити малоінформативні і поганої якості елементи, які можуть внести додаткові похибки у розв’язання поставленої задачі. Для усунення такої ситуації в роботі запропоновано алгоритм оцінки якості елемента вибірки з подальшим видаленням малоінформативних елементів.Посилання
Ghosh Ashish & Dehuri Satchidananda, "Evolutionary Algorithms for Multi-Criterion Optimization: A Survey," International Journal of Computing & Information Sciences, 2, 2004.
C. A. C. Coello, "Evolutionary multi-objective optimization: a historical view of the field," Comput. Intell. Mag. IEEE 1 (1), 28–36, 2006. https://doi.org/10.1109/MCI.2006.1597059
K. Deb, "Multi-Objective Optimization Using Evolutionary Algorithms," vol. 16, John Wiley & Sons, 2001.
A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, "Multi-objective evolutionary algorithms: a survey of the state of the art," Swarm Evol. Comput, 1 (1), 32–49, 2011. https://doi.org/10.1016/j.swevo.2011.03.001.
B. Li, J. Li, K. Tang, and X. Yao, "Many-objective evolutionary algorithms: a survey," ACM Comput. Surv. 48 (1), pp. 1–35, 2015. https://doi.org/10.1145/2792984
H. Ishibuchi, N. Tsukamoto, and Y. Nojima, "Evolutionary many-objective optimization: a short review," Proceedings of the IEEE Congress on Evolutionary Computation, 2008, pp. 2419–2426. https://doi.org/10.1109/CEC.2008.4631121
M. Farina, and P. Amato, "A fuzzy definition of “optimality” for many-criteria optimization problems," IEEE Trans. Syst. Man Cybern, Part A: Syst. Hum., 34 (3), 2004, pp. 315–326. https://doi.org/10.1007/s40747-019-0113-4
Mario Köppen, Raul Vicente-Garcia, and Bertram Nickolay, "Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization," in: Proceedings of the Evolutionary Multi-criterion Optimization, Springer, 2005, pp. 399–412. https://doi.org/10.1007/978-3-540-31880-4_28
S. Yang, M. Li, X. Liu, and J. Zheng, "A grid-based evolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput. 17 (5), 2013, pp. 721–736. https://doi.org/10.1109/TEVC.2012.2227145.
R. Wang, R. C. Purshouse, and P. J. Fleming, "Preference-inspired coevolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput. 17 (4), 2013, pp. 474–494. https://doi.org/10.1109/TEVC.2012.2204264.
M. Li, S. Yang, and X. Liu, "Shift-based density estimation for Pareto-based algorithm in many-objective optimization," IEEE Trans. Evol. Comput., 18 (3), 2014, pp. 348–365. https://doi.org/10.1109/TEVC.2013.2262178
K. Tan, T. Lee, & E. Khor, "Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons," Artificial Intelligence Review 17, pp. 251–290, 2002. https://doi.org/10.1023/A:1015516501242
[No3] O. I. Chumachenko and A. T. Kot. "Formation of a Learning Set for the Task of Image Processing," Electronics and Control Systems, N 3(65), Kyiv, NAU: Osvita Ukrainy, pp. 9–17, 2020. https://doi.org/10.18372/1990-5548. 65.14978
##submission.downloads##
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).