Особливості мультиплікативно комплементарних сигнальних конструкцій на основі узагальнених бінарних послідовностей Баркера
DOI:
https://doi.org/10.18372/1990-5548.58.13505Ключові слова:
Узагальнені бінарні послідовності Баркера, комплементарні коди Голея, узгоджена фільтрація, обробка сигналів, спектральні характеристики, виявлення сигналівАнотація
Радіотехнічні системи та системи обробки сигналів часто використовують широкосмугові сигнали та узгоджену фільтрацію для їх обробки. Комплементарні коди Голея є добре відомими сигнально-кодовими конструкціями серед різних типів широкосмугових сигналів. Вони є адитивно комплементарними сигналами з точки зору їх обробки. Також існують подібні до них мультиплікативно комплементарні сигнали на основі узагальнених бінарних послідовностей Баркера. У статті проаналізовано особливості виявлення та спектральні характеристики цих типів сигналів. Показано, що доцільність використання того чи іншого типу сигнальних конструкцій із зазначених залежить від сигнально-завадового стану на вході системи обробки сигналів.
Посилання
A. Holubnychyi, “Generalized binary Barker sequences and their application to radar technology,” Signal Processing Symposium (SPS), June 5-7, 2013 (Serock, Poland), Proceedings, 2013, pp. 1–9. DOI: 10.1109/SPS.2013.6623610
A. H. Holubnychyi and G. F. Konakhovych, “Multiplicative complementary binary signal-code constructions,” Radioelectronics and Communications Systems, vol. 61, no. 10, 2018, pp. 431–443. DOI: 10.3103/S0735272718100011
M. Golay, “Complementary series,” IRE Transactions on Information Theory, vol. 7, no. 2, 1961, pp. 82–87. DOI: 10.1109/TIT.1961.1057620
A. G. Holubnychyi, G. F. Konakhovych, A. G. Taranenko, and Ye. I. Gabrousenko, “Comparison of additive and multiplicative complementary sequences for navigation and flight control systems,” IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), October 16-18, 2018 (Kiev, Ukraine), Proceedings, 2018, pp. 24–27. DOI: 10.1109/MSNMC.2018.8576275
A. G. Holubnychyi, “Generation of generalized binary Barker sequences and their structure,” Problems of Informatization and Management, vol. 4, no 44, 2013, pp. 20–26. (in Russian)
A. G. Holubnychyi, “Correlation properties of generalized binary Barker sequences,” Problems of Informatization and Management, vol. 2, no. 50, 2015, pp. 48–55. (in Russian)
A. G. Holubnychyi, “Barker-like systems of sequences and their processing,” Technology and Design in Electronic Equipment, no. 6, 2013, pp. 19–24. DOI: 10.15222/tkea2013.6.19
A. G. Holubnychyi and G. F. Konakhovych, “Spread-spectrum control channels for UAV based on the generalized binary Barker sequences,” IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments (APUAVD), October 15-17, 2013 (Kiev, Ukraine), Proceedings, 2013, pp. 99–103. DOI: 10.1109/APUAVD.2013.6705296
V. Ankarao, S. Srivatsa, and G. A. Shanmugha Sundaram, “Evaluation of pulse compression techniques for X-band radar systems,” International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), March 22-24, 2017 (Chennai, India), Proceedings, 2017, pp. 1287–1292. DOI: 10.1109/WiSPNET.2017.8299971
Q. Li, M. Wen, E. Basar, and F. Chen, “Index modulated OFDM spread spectrum,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, 2018, pp. 2360–2374. DOI: 10.1109/TWC.2018.2793238
Z. Yao, M. Lu, “Signal multiplexing techniques for GNSS: the principle, progress, and challenges within a uniform framework,” IEEE Signal Processsing Magazine, vol. 34, no 5, 2017, pp. 16–26. DOI: 10.1109/MSP.2017.2713882
A. J. Martín et al., “EMFi-based ultrasonic sensory array for 3D localization of reflectors using positioning algorithms,” IEEE Sensors Journal, vol. 15, no. 5, 2015, pp. 2951–2962. DOI: 10.1109/JSEN.2014.2384197
S. Hirata, K. Yanamaka, and H. Hachiya, “Evaluation of position and velocity measurement for a moving object by pulse compression using ultrasound coded by preferred-pair M-sequences,” IEEE International Ultrasonics Symposyum (IUS), September 6-9, 2017 (Washington, DC, USA), Proceedings, 2017, pp. 1–4. DOI: 10.1109/ULTSYM.2017.8092635
J. Huang and N. E. Wu, “Validation of a small signal probing concept for prognosis on a nonlinear model for longitudinal motion of a Boeing-747,” American Control Conference, June 10-12, 2009 (St. Louis, MO, USA), Proceedings, 2009, pp. 4165–4170. DOI: 10.1109/ACC.2009.5160146
M. Ruschmann, J. Huang, and N. E. Wu, “Probing the NASA generic transport aircraft in real-time for health monitoring,” 48h IEEE Conference on Decision and Control (CDC) held jointly with 28th Chinese Control Conference, December 15-18, 2009 (Shanghai, China), Proceedings, 2009, pp. 4920–4926. DOI: 10.1109/CDC.2009.5400348
J. Rhodes, “Matched-filter theory for Doppler-invariant pulse compression,” IEEE Transactions on Circuit Theory, vol. 19, no. 1, 1972, pp. 53–59. DOI: 10.1109/TCT.1972.1083375
A. Johnston, “Improvements to a pulse compression radar matched filter,” Radio and Electronic Engineer, vol. 53, no. 4, 1983, pp. 138–140. DOI: 10.1049/ree.1983.0029
Yu. V. Matiiasevych, Hilbert’s Tenth Problem, Moscow, Nauka, 1993, 223 p. (in Russian)
C. J. Nunn and G. E. Coxson, “Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105,” IEEE Transactions on Aerospace Electronic Systems, vol. 44, no. 1, 2008, pp. 392–395. DOI: 10.1109/TAES.2008.4517015
L. Xu, Q. Liang, and T. Jiang, “A ternary pulse compression code: design and application to radar system,” IEEE International Conference on Acoustics, Speech and Signal Processing, March 14-19, 2010 (Dallas, TX, USA), Proceedings, 2010, pp. 4050–4053. DOI: 10.1109/ICASSP.2010.5495762
C. J. Nunn and G. E. Coxson, “Polyphase pulse compression codes with optimal peak and integrated sidelobes,” IEEE Transactions on Aerospace Electronic Systems, vol. 45, no. 2, 2009, pp. 775–781. DOI: 10.1109/TAES.2009.5089560
##submission.downloads##
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).