Структурно-параметричний синтез ансамблів гібридних нейронних мереж
DOI:
https://doi.org/10.18372/1990-5548.54.12323Ключові слова:
Нейронні мережі, ансамбль, навчання, оптимізація, топологіяАнотація
У статті розглянуто підхід до дизайну ансамблю нейронних мереж як колекції кінцевого числа нейронних мереж для вирішення однієї і тієї ж задачі, а потім об'єднання результатів їх роботи. Запропоновано алгоритм оптимального вибору топологій нейронних мереж і їх кількості для включення в ансамбль. Подальше уточнення складу ансамблю здійснюється за допомогою операції обрізання. Вихід ансамблю є середньозваженим значенням виходів кожної мережі, при цьому сукупні ваги визначаються як функція відносної похибки кожної мережі, визначеної при навчанні. Представлено новий підхід до динамічного визначення ансамблевих ваг в рамках алгоритму навчання. Ваги пропорційні визначеності відповідних виходів.
Посилання
G. E. Hinton, A practical guide to training restricted Boltzmann machines, (Tech. Rep. 2010-000). Toronto: Machine Learning Group, University of Toronto. 2010, pp. 160–169.
J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimiza-tion,” in Proceedings of the First IEEE Conference on Evolutionary Computation, vol. 1, Piscataway, 1994, pp. 82–87.
Chumachenko E. I. Features of hybrid neural net-works use with input data of different types / E. I. Chumachenko, D. Yu. Koval, G. A. Sipakov, D. D. Shevchuk // Electronics and Control Systems, N 4(42) – Kyiv: NAU, 2014. – pp. 91–97.
Chumachenko O. I., Kryvenko I. V. Neural networks module learning // Electronics and Control Systems, N 2(48) – Kyiv: NAU, 2016. – pp. 76–80.
L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
L. Breiman. Random forests. Machine Learning, 45(1):5 –32, 2001.
W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? on its accuracy and efficiency. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 51 – 58, 2003.
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
T. K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.
L.K. Hansen and P. Salamon, “Neural Network Ensembles,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, pp. 993-1001, 1990.
A. Krogh and J. Vedelsby, “Neural Network Ensembles, Cross Validation, and Active Learning,” Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, eds., vol. 7, pp. 231-238, MIT Press, 1995.
L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
Y. Freund and R.E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Proc. Second European Conf. Computational Learning Theory, pp. 23-37, 1995.
E. Bauer and R. Kohavi, “An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants,” Machine Learning, vol. 36, nos. 1-2, pp. 105-139, 1999.
G. Martґınez-Mu˜noz and A. Suaґrez, “Aggregation Ordering in Bagging,” Proc. IASTED Int’l Conf. Artificial Intelligence and Applications, pp. 258-263, 2004.
G. Martґınez-Mu˜noz and A. Suґarez, “Using Boosting to Prune Bagging Ensembles,” Pattern Recognition Letters, vol. 28, no. 1, pp. 156-165, 2007.
Y. Zhang, S. Burer, and W.N. Street, “Ensemble Pruning via Semi-Definite Programming,” J. Machine Learning Research, vol. 7, pp. 1315-1338, 2006.
G. Tsoumakas, L. Angelis, and I. Vlahavas, “Selective Fusion of Heterogeneous Classifiers,” Intelligent Data Analysis, vol. 9, pp. 511-525, 2005.
R.E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A Comparison of Decision Tree Ensemble Creation Techniques,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 173–180, Jan. 2007.
Zhenyu Lu, Xindong Wu+, Xingquan Zhu@, Josh Bongard, “Ensemble Pruning via Individual Contribution Ordering,” http://www.cs.uvm.edu/~jbongard/papers/2010_KDD_Lu.pdf
Imran Maqsood, Muhammad Riaz Khan, and Ajith Abraham, “An ensemble of neural networks for weather forecasting,” Neural Comput & Applic (2004) 13: 112–122, DOI 10.1007/s00521-004-0413-4.
##submission.downloads##
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).