H2/H∞-оптимізація інерціальних стабілізованих платформ
DOI:
https://doi.org/10.18372/1990-5548.47.10269Ключові слова:
H2/H∞-підхід, параметричний синтез, робастні системи, векторна оптимізація, генетичний алгоритмАнотація
Статтю присвячено H2/H∞-підходу до проектування інерціальних стабілізованих платформ, що функціонуютьна рухомих об’єктах різних типів, включаючи безпілотні літальні апарати. Представлено формалізовану постановку проблеми векторної оптимізації. Надано алгоритм робастної оптимізації та результати моделюваннясинтезованої системи. Представлено порівняльний аналіз результатів моделювання систем, синтезованих за допомогою методу Нелдера Міда та генетичного алгоритму. Запропонований підхід забезпечує функціонуванняінерціальних стабілізованих платформ в складних умовах реальної експлуатаціПосилання
J. M. Hilkert, “Inertially stabilized platform technology”. IEEE Control Systems Magazine, vol. 26, no. 1, 2008, pp. 26–46.
M. K. Masten, “Inertially Stabilized Platforms for Optical Systems”, IEEE Control Systems Magazine, vol. 26, no. 1, 2008, pp. 47–64.
I. P. Egupov, Methods of Robust, Neuro-Fuzzy and Adaptive Control. Moscow: MSTU named after N.E. Bauman, 2002 (in Russian).
S. Skogestad, I. Postlethwaite, Multivariable Feedback Control, New York: Jonh Wiley, 1997.
A. A. Tunik, H. Ruy, and H. C. Lee, “Parametric optimization procedure for robust flight control system design”, KSAS International Journal, 2001, vol. 2, no. 2, pp. 95–107.
H. Kwakernaak. “Robust control and H∞-optimization”, Automatica, 1993, vol. 29, no. 2, pp. 255–273.
A. A. Tunik, and O. A. Sushchenko, “Usage of vector parametric optimization for robust stabilization of ground vehicles informationmeasuring devices”, Proceedings of the National Aviation University, 2013, no. 4, pp. 23–32.
O. A. Sushchenko, “Robust parametric optimization of stabilization systems for ground vehicles”, Proceedings of the National Aviation University, 2008, no. 4, pp. 23–29 (in Ukrainian).
D. McLean, Automatic Flight Control Systems, New-York: Prentice Hall, 1990.
V V. A. Besekersky, and E. P. Popov, Theory of Automatic Control Systems. Moscow, Nauka Publ., 2004, 747 p. (in Russian).
A. H. Wright, “Genetic algorithms for real parameter optimization”, Foundations of Genetic Algorithms, 1991, pp. 205–218.
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Boston: Addison Wesley, 1989.
R. L. Haupt, and S. E. Haupt, Practical Genetic Algorithms, New York: Wiley, 2004.
J. A. Nelder, R. A. Mead, “Simplex method for function minimization”, Computer J., 1964, no. 7, pp. 308–313.
L. A. Gladkov, V. V. Kureychik, and V. M. Kureychik, Genetic algorithms, Moscow: Fizmatlit, 2006. (in Russian)
B. De Schutter, “Minimal state-space realization in linear system theory”, Journal of Computational and Applied Mathematics, 2000, vol. 121, no. 1–2, pp. 331–354.
D. V. Balandin, and M. M. Kogan, “Synthesis of optimal linear-quadratic control laws based on linear matrix inequalities”, Automation and Remote Control, 2007, no. 3, pp. 3–18 (in Russian).
##submission.downloads##
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).