Diagnosis of Vestibular Schwannoma Based on Intelligent MRI Image Processing

Authors

DOI:

https://doi.org/10.18372/1990-5548.84.20193

Keywords:

vestibular schwannoma, diagnostic and prognostic biomarkers, MRI images, convolutional neural network, transformers, semantic segmentation

Abstract

The study identified the main clinical and diagnostic features of the disease, reviewed modern diagnostic methods for schwannoma, including magnetic resonance imaging and computed tomography, as well as the role of clinical examination, history and laboratory tests, analyzed available open data and proposed the concept of combining medical images with molecular indicators to build more effective diagnostic models based on semantic segmentation. Diagnostic and prognostic biomarkers were summarized, including TNF-α, CD68, CD163, IL-6, CCR2 and others, which may increase the accuracy of predicting the course of the disease.

Author Biographies

Victor Sineglazov , State University "Kyiv Aviation Institute"

Doctor of Engineering Science

Professor

Head of the Department Aviation Computer-Integrated Complexes Department

Faculty of Air Navigation Electronics and Telecommunications

Volodymyr Fedirko , Romodanov Institute of Neurosurgery NAMS of Ukraine, Kyiv

MD, PhD, DMSs 

Head of Subtentorial neurooncology department

Vasyl Shust , Romodanov Institute of Neurosurgery NAMS of Ukraine, Kyiv

MD

PhD Student

Subtentorial neurooncology department

Andrew Sheruda , National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Master's degree

Department of Artificial Intelligence

Institute of Applied Systems Analysis

Maksym Shevchenko, State University "Kyiv Aviation Institute"

PhD student

Aviation Computer-Integrated Complexes Department

Faculty of Air Navigation Electronics and Telecommunications

References

S. Ali, & A. M. Syed, “Vestibular-Schwannoma-SEG: Annotated MRI Dataset for Tumor Segmentation,” The Cancer Imaging Archive (TCIA), 2023. https://www.cancerimagingarchive.net/collection/vestibular-schwannoma-seg/

R. C. Thompson, S. M. Stevens,, D. C. Miller, et al. “Proteomic analysis identifies fluid biomarkers associated with vestibular schwannoma–associated hearing loss,” Frontiers in Neurology, 15, 11807327, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807327/

F. J. Gomez, D. J. Lee, & J. C. Wu, “Single-cell transcriptomic analysis reveals immune landscape of sporadic and NF2-related vestibular schwannomas,” Neuro-Oncology Advances, 4(1), vdac127, 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496830/

R. H. Jones, D. Patel, & L. M. Smith, “The tumour microenvironment in vestibular schwannoma: Immunological and molecular perspectives,” British Journal of Cancer, 130, 842–853, 2024. https://www.nature.com/articles/s41416-024-02646-2

L. Leisz, R. Fahlbusch, & M. Buchfelder, “Vestibular schwannoma volume and tumor growth correlates with macrophage marker expression,” Scientific Reports, 12, Article 14799, 2022. https://www.researchgate.net/publication/363485341_Vestibular_Schwannoma_Volume_and_Tumor_Growth_Correlates_with_Macrophage_Marker_Expression_Academic_Editors_Yasin_Temel_and. https://doi.org/10.3390/cancers14184429

Stankovic Lab – Stanford University School of Medicine. (n.d.). Research overview: Translational studies on hearing loss and vestibular schwannoma. Retrieved from. https://med.stanford.edu/stankovic-lab/research.html

S. M. Heman-Ackah, R. Blue, S. P. Gubbels, A. D. Sweeney, and M. L. Carlson, “Machine learning-based prediction of facial nerve outcomes following vestibular schwannoma microsurgery,” Scientific Reports, vol. 14, Article number: 6541, 2024. https://doi.org/10.1038/s41598-024-63161-1

C. C. Lee, W. H. Lee, C. H. Wu, et al., “Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery,” Scientific Reports, vol. 11, Article number: 3300, 2021. https://doi.org/10.1038/s41598-021-82665-8

Y. Chen, J. M. Wolterink, O. Neve, et al. “DeepGrowth: Vestibular schwannoma growth prediction from longitudinal MRI by time conditioned neural fields,” arXiv preprint, 2024. arXiv:2404.02614. – URL: https://arxiv.org/abs/2404.02614

N. A. George-Jones, K. Wang, J. Wang, and J. B. Hunter, “Prediction of vestibular schwannoma enlargement after radiosurgery using tumor shape and MRI texture features,” ResearchGate, 2021. URL: https://www.researchgate.net/publication/347850268

N. A. George-Jones, K. Wang, J. Wang, and J. B. Hunter, “Prediction of vestibular schwannoma enlargement after radiosurgery using tumor shape and MRI texture features,” Otology & Neurotology, vol. 42, no. 3, pp. E348–E354. 2021. https://doi.org/10.1097/MAO.0000000000002938

Y. Itoyama, M. Matsuda, M. Suzuki, et al., “MRI radiomics-based prediction of vestibular schwannoma growth: a retrospective study,” European Archives of Oto-Rhino-Laryngology, 2022. https://doi.org/10.1007/s00405-022-07479-4

J. B. Patel, K. Vakharia, Y. Tao, et al., “Radiomics in head and neck cancer: basic principles and clinical applications,” Frontiers in Oncology, 2022. — Vol. 12:851620. https://doi.org/10.3389/fonc.2022.851620

S. Yüksel, A. Altunkeser, & E. Yıldız, “Vestibular Schwannoma with Superficial Siderosis: A Case Report,” Journal of Surgery and Medicine, 4(11), 991–993, 2020. https://jsurgmed.com/article/download/649652/5578

M. P. Strohl, & M. K. Wax, Symptoms, “Audiometric and Vestibular Laboratory Findings, and Imaging in a Concurrent Superior Canal Dehiscence Syndrome and Vestibular Schwannoma: A Case Report,” Journal of the American Academy of Audiology, 31(6), 490–495, 2020. https://pubmed.ncbi.nlm.nih.gov/31267955/

Jifeng Dai et al., Instance-sensitive Fully Convolutional Networks. 2016. eprint: [arXiv:1603.08678](https://arxiv.org/abs/1603.08678).

Ronneberger Olaf, Fischer Philipp, and Brox Thomas. "U-Net: Convolutional Networks for Biomedical Image Segmentation," LNCS, vol. 9351, Oct. 2015, pp. 234–241. ISBN: 978-3-319-24573-7. https://doi.org/10.1007/978-3-319-24574-4_28.

Kaiming He et al., "Mask R-CNN." 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322.

Liang-Chieh Chen et al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation," Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII, Springer-Verlag, 2018, pp. 833–851. ISBN: 978-3-030-01233-5. https://doi.org/10.1007/978-3-030-01234-2_49.

Ze Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” 2021. arXiv: [2103.14030] (https://arxiv.org/abs/2103.14030).

Zhenhong Sun et al., "Pyramid Attention Network for Semantic Segmentation," BMVC, 2018. URL: [https://bmvc2018.org](https://bmvc2018.org).

Alexey Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” International Conference on Learning Representations, 2021. https://doi.org/10.48550/arXiv.2010.11929.

Bichen Wu et al., "Visual Transformers: Token-based Image Representation and Processing for Computer Vision," CoRR, abs/2006.03677 (2020). https://doi.org/10.48550/arXiv.2006.03677.

K. J. Park, S. C. Hwang, S. H. Park, D. H. Kang, J. Y Park, & J. H. Kim, “Hypervascular Vestibular Schwannoma: A Case Report,” Journal of the Korean Society of Radiology, 71(5), 197–200, 2014. https://jksronline.org/DOIx.php?id=10.3348%2Fjksr.2014.71.5.197

V. M. Ravindra, & W. T. Couldwell, “Vestibular Schwannoma of Oscillating Size: A Case Report and Review of the Literature,” Surgical Neurology International, 3, 25, 2012. https://pmc.ncbi.nlm.nih.gov/articles/PMC3263002/

Downloads

Published

2025-06-30

Issue

Section

COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES