Діагностика вестибулярної шванноми на основі інтелектуальної обробки зображень МРТ
DOI:
https://doi.org/10.18372/1990-5548.84.20193Ключові слова:
вестибулярна шваннома, діагностичні та прогностичні біомаркери, МРТ-зображення, згорткова нейронна мережа, трансформатори, семантична сегментаціяАнотація
У дослідженні було визначено основні клінічні та діагностичні особливості захворювання, розглянуто сучасні методи діагностики шванноми, зокрема магнітно-резонансну та комп’ютерну томографію, а також роль клінічного огляду, анамнезу та лабораторних аналізів, проаналізовано доступні відкриті дані та запропоновано концепцію поєднання медичних зображень з молекулярними індикаторами для побудови ефективніших діагностичних моделей на основі семантичної сегментації. Було узагальнено діагностичні та прогностичні біомаркери, включаючи TNF-α, CD68, CD163, IL-6, CCR2 та інші, що може підвищити точність прогнозування перебігу захворювання.
Посилання
S. Ali, & A. M. Syed, “Vestibular-Schwannoma-SEG: Annotated MRI Dataset for Tumor Segmentation,” The Cancer Imaging Archive (TCIA), 2023. https://www.cancerimagingarchive.net/collection/vestibular-schwannoma-seg/
R. C. Thompson, S. M. Stevens,, D. C. Miller, et al. “Proteomic analysis identifies fluid biomarkers associated with vestibular schwannoma–associated hearing loss,” Frontiers in Neurology, 15, 11807327, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807327/
F. J. Gomez, D. J. Lee, & J. C. Wu, “Single-cell transcriptomic analysis reveals immune landscape of sporadic and NF2-related vestibular schwannomas,” Neuro-Oncology Advances, 4(1), vdac127, 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496830/
R. H. Jones, D. Patel, & L. M. Smith, “The tumour microenvironment in vestibular schwannoma: Immunological and molecular perspectives,” British Journal of Cancer, 130, 842–853, 2024. https://www.nature.com/articles/s41416-024-02646-2
L. Leisz, R. Fahlbusch, & M. Buchfelder, “Vestibular schwannoma volume and tumor growth correlates with macrophage marker expression,” Scientific Reports, 12, Article 14799, 2022. https://www.researchgate.net/publication/363485341_Vestibular_Schwannoma_Volume_and_Tumor_Growth_Correlates_with_Macrophage_Marker_Expression_Academic_Editors_Yasin_Temel_and. https://doi.org/10.3390/cancers14184429
Stankovic Lab – Stanford University School of Medicine. (n.d.). Research overview: Translational studies on hearing loss and vestibular schwannoma. Retrieved from. https://med.stanford.edu/stankovic-lab/research.html
S. M. Heman-Ackah, R. Blue, S. P. Gubbels, A. D. Sweeney, and M. L. Carlson, “Machine learning-based prediction of facial nerve outcomes following vestibular schwannoma microsurgery,” Scientific Reports, vol. 14, Article number: 6541, 2024. https://doi.org/10.1038/s41598-024-63161-1
C. C. Lee, W. H. Lee, C. H. Wu, et al., “Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery,” Scientific Reports, vol. 11, Article number: 3300, 2021. https://doi.org/10.1038/s41598-021-82665-8
Y. Chen, J. M. Wolterink, O. Neve, et al. “DeepGrowth: Vestibular schwannoma growth prediction from longitudinal MRI by time conditioned neural fields,” arXiv preprint, 2024. arXiv:2404.02614. – URL: https://arxiv.org/abs/2404.02614
N. A. George-Jones, K. Wang, J. Wang, and J. B. Hunter, “Prediction of vestibular schwannoma enlargement after radiosurgery using tumor shape and MRI texture features,” ResearchGate, 2021. URL: https://www.researchgate.net/publication/347850268
N. A. George-Jones, K. Wang, J. Wang, and J. B. Hunter, “Prediction of vestibular schwannoma enlargement after radiosurgery using tumor shape and MRI texture features,” Otology & Neurotology, vol. 42, no. 3, pp. E348–E354. 2021. https://doi.org/10.1097/MAO.0000000000002938
Y. Itoyama, M. Matsuda, M. Suzuki, et al., “MRI radiomics-based prediction of vestibular schwannoma growth: a retrospective study,” European Archives of Oto-Rhino-Laryngology, 2022. https://doi.org/10.1007/s00405-022-07479-4
J. B. Patel, K. Vakharia, Y. Tao, et al., “Radiomics in head and neck cancer: basic principles and clinical applications,” Frontiers in Oncology, 2022. — Vol. 12:851620. https://doi.org/10.3389/fonc.2022.851620
S. Yüksel, A. Altunkeser, & E. Yıldız, “Vestibular Schwannoma with Superficial Siderosis: A Case Report,” Journal of Surgery and Medicine, 4(11), 991–993, 2020. https://jsurgmed.com/article/download/649652/5578
M. P. Strohl, & M. K. Wax, Symptoms, “Audiometric and Vestibular Laboratory Findings, and Imaging in a Concurrent Superior Canal Dehiscence Syndrome and Vestibular Schwannoma: A Case Report,” Journal of the American Academy of Audiology, 31(6), 490–495, 2020. https://pubmed.ncbi.nlm.nih.gov/31267955/
Jifeng Dai et al., Instance-sensitive Fully Convolutional Networks. 2016. eprint: [arXiv:1603.08678](https://arxiv.org/abs/1603.08678).
Ronneberger Olaf, Fischer Philipp, and Brox Thomas. "U-Net: Convolutional Networks for Biomedical Image Segmentation," LNCS, vol. 9351, Oct. 2015, pp. 234–241. ISBN: 978-3-319-24573-7. https://doi.org/10.1007/978-3-319-24574-4_28.
Kaiming He et al., "Mask R-CNN." 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322.
Liang-Chieh Chen et al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation," Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII, Springer-Verlag, 2018, pp. 833–851. ISBN: 978-3-030-01233-5. https://doi.org/10.1007/978-3-030-01234-2_49.
Ze Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” 2021. arXiv: [2103.14030] (https://arxiv.org/abs/2103.14030).
Zhenhong Sun et al., "Pyramid Attention Network for Semantic Segmentation," BMVC, 2018. URL: [https://bmvc2018.org](https://bmvc2018.org).
Alexey Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” International Conference on Learning Representations, 2021. https://doi.org/10.48550/arXiv.2010.11929.
Bichen Wu et al., "Visual Transformers: Token-based Image Representation and Processing for Computer Vision," CoRR, abs/2006.03677 (2020). https://doi.org/10.48550/arXiv.2006.03677.
K. J. Park, S. C. Hwang, S. H. Park, D. H. Kang, J. Y Park, & J. H. Kim, “Hypervascular Vestibular Schwannoma: A Case Report,” Journal of the Korean Society of Radiology, 71(5), 197–200, 2014. https://jksronline.org/DOIx.php?id=10.3348%2Fjksr.2014.71.5.197
V. M. Ravindra, & W. T. Couldwell, “Vestibular Schwannoma of Oscillating Size: A Case Report and Review of the Literature,” Surgical Neurology International, 3, 25, 2012. https://pmc.ncbi.nlm.nih.gov/articles/PMC3263002/
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).