Intelegence Design of Hybrid Vertical-axis Rotors
DOI:
https://doi.org/10.18372/1990-5548.78.18275Keywords:
automatic control system, Savonius rotor, Darrieus rotor, wind turbine, genetic algorithm, ANSYSAbstract
The work is devoted to the necessity of creating the vertical-axis rotors of wind power stations in the urban area, which can be placed on roofs and makes it possible to increase their energy productivity by 60-70%. It is shown that the locations of such rotors on roofs has its own characteristics, which consists in the need to take into account the shape of the topography of the house, its storey, the direction and speed of the winds above it, and others. Examples of implementation of wind farms are considered and it is proven that their energy efficiency can be increased due to the use of hybrid vertical-axis rotors, which consist of a combination of Darrieus and Savonius rotors, where the Darrieus rotor is the main source(s) of wind energy conversion into the electric one, while the Savonius rotor(s) provide the acceleration of the Darrieus rotors. For the implementation it has been used the genetic algorithm. An inelegance design system has been developed. An example of the application of this system for the design of a hybrid rotor is given.
References
C. Bak, “Aerodynamic design of wind turbine rotors,” In P. Brønsted & R. Nijssen (Eds.), 2013, Advances in wind turbine blade design and materials: Wood head Publishing https://doi.org/10.1533/9780857097286.1.59
R. Barthelmie, S. Frandsen, K. Hansen, J. Schepers, K. Rados, W. Schlez, and S. Neckelmann, “Modelling the impact of wakes on power output at Nysted and Horns Rev.,” Paper presented at the European Wind Energy Conference, 2009. Stockholm, Sweden.
A. S. Solonar, P. A. Khmarski, A. A. Mihalkovki, S. V. Tsuprik, and V. S. Ivanuk, “Optical-location coordinator of the homing system of an unmanned aerial vehicle,” Doklady BGUIR. 2018, 3(113):19–25. Available at: https://elibrary.ru/item.asp?id=35061424 (accessed 13.12.2018) [in Russian]
M. A. Richards, Fundamentals of Radar Signal processing, New York, McGraw-Hill Education, 2014, 656 p.
D. H. Allen, & W. E. Haisler, Introduction to aerospace structural analysis, 1985.
Tiago Oliveira and Pedro Encarnado, “Ground target tracking control system for unmanned aerial vehicles,” Journal of Intelligent and Robotic Systems, pp. 372–387, August 2013, https://doi.org/10.1007/s10846-012-9719-0
A. A. Monakov, Theoretical Fundamentals of Radiolocation, Saint Petersburg: GUAP, 2002, 70 p.
C. C. Aggarwal, & C. K. Reddy, “Data Clustering: Algorithms and Applications: CRC Press.,” 2013. https://doi.org/10.1201/b15410
S. Agrawal, B. Panigrahi, & M. K. Tiwari, “A multi-objective particle swarm algorithm with fuzzy clustering for power dispatching,” IEEE Transactions on Evolutionary Computing, 12(5), 2008, pp. 529–541. https://doi.org/10.1109/TEVC.2007.913121
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).