TRAINING DATA SAMPLING FOR CONVENTIONAL NEURAL NETWORKS CONFIGURING
DOI:
https://doi.org/10.18372/1990-5548.66.15225Keywords:
Сonvolution neural networks, artificial reproduction of data, uninformative data, intelligent medical systemsAbstract
The problem of generating training data for setting up the convolutional neural networks is considered, which is of great importance in the construction of intelligent medical diagnostic systems, where due to the lack of elements of the training sample, it is proposed to use the approaches of artificial data multiplication based on the initial training sample of a fixed size for the image processing (the results of the ultrasound, CT and MRI). It shows that the increase of the training sample resulted in less informative and poor quality elements, which can introduce extra errors in the goal achievement. To eliminate this situation the algorithm for assessing the quality of a sample element with the subsequent removal of uninformative elements is proposed.References
Ghosh Ashish & Dehuri Satchidananda, "Evolutionary Algorithms for Multi-Criterion Optimization: A Survey," International Journal of Computing & Information Sciences, 2, 2004.
C. A. C. Coello, "Evolutionary multi-objective optimization: a historical view of the field," Comput. Intell. Mag. IEEE 1 (1), 28–36, 2006. https://doi.org/10.1109/MCI.2006.1597059
K. Deb, "Multi-Objective Optimization Using Evolutionary Algorithms," vol. 16, John Wiley & Sons, 2001.
A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, "Multi-objective evolutionary algorithms: a survey of the state of the art," Swarm Evol. Comput, 1 (1), 32–49, 2011. https://doi.org/10.1016/j.swevo.2011.03.001.
B. Li, J. Li, K. Tang, and X. Yao, "Many-objective evolutionary algorithms: a survey," ACM Comput. Surv. 48 (1), pp. 1–35, 2015. https://doi.org/10.1145/2792984
H. Ishibuchi, N. Tsukamoto, and Y. Nojima, "Evolutionary many-objective optimization: a short review," Proceedings of the IEEE Congress on Evolutionary Computation, 2008, pp. 2419–2426. https://doi.org/10.1109/CEC.2008.4631121
M. Farina, and P. Amato, "A fuzzy definition of “optimality” for many-criteria optimization problems," IEEE Trans. Syst. Man Cybern, Part A: Syst. Hum., 34 (3), 2004, pp. 315–326. https://doi.org/10.1007/s40747-019-0113-4
Mario Köppen, Raul Vicente-Garcia, and Bertram Nickolay, "Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization," in: Proceedings of the Evolutionary Multi-criterion Optimization, Springer, 2005, pp. 399–412. https://doi.org/10.1007/978-3-540-31880-4_28
S. Yang, M. Li, X. Liu, and J. Zheng, "A grid-based evolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput. 17 (5), 2013, pp. 721–736. https://doi.org/10.1109/TEVC.2012.2227145.
R. Wang, R. C. Purshouse, and P. J. Fleming, "Preference-inspired coevolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput. 17 (4), 2013, pp. 474–494. https://doi.org/10.1109/TEVC.2012.2204264.
M. Li, S. Yang, and X. Liu, "Shift-based density estimation for Pareto-based algorithm in many-objective optimization," IEEE Trans. Evol. Comput., 18 (3), 2014, pp. 348–365. https://doi.org/10.1109/TEVC.2013.2262178
K. Tan, T. Lee, & E. Khor, "Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons," Artificial Intelligence Review 17, pp. 251–290, 2002. https://doi.org/10.1023/A:1015516501242
[No3] O. I. Chumachenko and A. T. Kot. "Formation of a Learning Set for the Task of Image Processing," Electronics and Control Systems, N 3(65), Kyiv, NAU: Osvita Ukrainy, pp. 9–17, 2020. https://doi.org/10.18372/1990-5548. 65.14978
Downloads
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).