TRAINING DATA SAMPLING FOR CONVENTIONAL NEURAL NETWORKS CONFIGURING

Authors

  • V. M. Sineglazov National Aviation University, Kyiv
  • A. T. Kot National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.18372/1990-5548.66.15225

Keywords:

Сonvolution neural networks, artificial reproduction of data, uninformative data, intelligent medical systems

Abstract

The problem of generating training data for setting up the convolutional neural networks is considered, which is of great importance in the construction of intelligent medical diagnostic systems, where due to the lack of elements of the training sample, it is proposed to use the approaches of artificial data multiplication based on the initial training sample of a fixed size for the image processing (the results of the ultrasound, CT and MRI). It shows that the increase of the training sample resulted in less informative and poor quality elements, which can introduce extra errors in the goal achievement. To eliminate this situation the algorithm for assessing the quality of a sample element with the subsequent removal of uninformative elements is proposed.

Author Biographies

V. M. Sineglazov, National Aviation University, Kyiv

Aviation Computer-Integrated Complexes Department

Faculty of Air Navigation Electronics and Telecommunications

 

A. T. Kot, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Technical Cybernetic Department

Post-graduate student

References

Ghosh Ashish & Dehuri Satchidananda, "Evolutionary Algorithms for Multi-Criterion Optimization: A Survey," International Journal of Computing & Information Sciences, 2, 2004.

C. A. C. Coello, "Evolutionary multi-objective optimization: a historical view of the field," Comput. Intell. Mag. IEEE 1 (1), 28–36, 2006. https://doi.org/10.1109/MCI.2006.1597059

K. Deb, "Multi-Objective Optimization Using Evolutionary Algorithms," vol. 16, John Wiley & Sons, 2001.

A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, "Multi-objective evolutionary algorithms: a survey of the state of the art," Swarm Evol. Comput, 1 (1), 32–49, 2011. https://doi.org/10.1016/j.swevo.2011.03.001.

B. Li, J. Li, K. Tang, and X. Yao, "Many-objective evolutionary algorithms: a survey," ACM Comput. Surv. 48 (1), pp. 1–35, 2015. https://doi.org/10.1145/2792984

H. Ishibuchi, N. Tsukamoto, and Y. Nojima, "Evolutionary many-objective optimization: a short review," Proceedings of the IEEE Congress on Evolutionary Computation, 2008, pp. 2419–2426. https://doi.org/10.1109/CEC.2008.4631121

M. Farina, and P. Amato, "A fuzzy definition of “optimality” for many-criteria optimization problems," IEEE Trans. Syst. Man Cybern, Part A: Syst. Hum., 34 (3), 2004, pp. 315–326. https://doi.org/10.1007/s40747-019-0113-4

Mario Köppen, Raul Vicente-Garcia, and Bertram Nickolay, "Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization," in: Proceedings of the Evolutionary Multi-criterion Optimization, Springer, 2005, pp. 399–412. https://doi.org/10.1007/978-3-540-31880-4_28

S. Yang, M. Li, X. Liu, and J. Zheng, "A grid-based evolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput. 17 (5), 2013, pp. 721–736. https://doi.org/10.1109/TEVC.2012.2227145.

R. Wang, R. C. Purshouse, and P. J. Fleming, "Preference-inspired coevolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput. 17 (4), 2013, pp. 474–494. https://doi.org/10.1109/TEVC.2012.2204264.

M. Li, S. Yang, and X. Liu, "Shift-based density estimation for Pareto-based algorithm in many-objective optimization," IEEE Trans. Evol. Comput., 18 (3), 2014, pp. 348–365. https://doi.org/10.1109/TEVC.2013.2262178

K. Tan, T. Lee, & E. Khor, "Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons," Artificial Intelligence Review 17, pp. 251–290, 2002. https://doi.org/10.1023/A:1015516501242

[No3] O. I. Chumachenko and A. T. Kot. "Formation of a Learning Set for the Task of Image Processing," Electronics and Control Systems, N 3(65), Kyiv, NAU: Osvita Ukrainy, pp. 9–17, 2020. https://doi.org/10.18372/1990-5548. 65.14978

Downloads

Issue

Section

COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES