Aerodynamic performances of complex shape wings
DOI:
https://doi.org/10.18372/2306-1472.26.1248Abstract
The task of calculation of optimum circulation distribution along wingspan of complex shape wings is considered. For solving this problem Glauert-Trefts’s equation and its modifications are used. Calculations are carried out for both sweptback and forward-swept wings. It is shown that optimum circulation distribution depends on the sweep angle χ and on the chord b(z) distribution along wingspan. Some aerodynamic coefficients such as induced drag coefficient CDi and pitching moment coefficient CmZ are calculated for wings of different shape. The comparison of wings
performances is done. In order to obtain the minimum wing induced drag with the given lift force it is very important to determine how the circulation should change along the wingspan. Results obtained by E. K. Karafoli G.F. Burago and others are used. A set of theoretical generalizations and modifications of formulas for aerodynamic coefficients are
obtained. These results permit to compare aerodynamic performances of sweptback and forward-swept wings. Modified Glauert-Trefts’s integral-differential equation is formulated for wings of complex shape.
References
Аржаников Н.С., Мальцев В.Н. Аэродинамика. – М.: Оборонгиз, 1956. – 483 с.
Карафоли Е.К. Аэродинамика крыла самолета. – М.: АН СССР, 1956. – 477 с.
Чаплыгин С.А. Полн. собр. соч. Т. 3. – Л.: АН СССР, 1935. – 338 с.
Жуковский Н.Е. Вихри. Теория крыла. Авиация // Полн. собр. соч. – М.; Л.: Гл. ред. авиац. лит., 1937. – Т. 5. – 492 с.
Бураго Г.Ф. Теория крыла конечного размаха. – М.: ВВИА им. проф. Н.Е. Жуков-ского, 1952. – 94 с.
Краснов Н.Ф. Аэродинамика. – М.: Высш. шк., 1971. – 630 с.
Мхитарян А.М. Аэродинамика. – М.: Машиностроение, 1976. – 446 с.
Мхитарян А.М., Ушаков В.В., Баскакова А.Г., Трубенок В.Д. Аэрогидромеханика. – М.: Машиностроение, 1984. – 384 с.