Органічні фотовольтаїчні елементи на гнучких підкладинках

V. V. Kislyuk, О. Yu. Kuznetsova

Анотація


У огляді розглянуто сучасні проблеми у галузі створення фотовольтаїчних (ФВ) джерел електрики на гнучких підкладинках. На підставі багатьох експериментальних свідчень зроблено висновок про перспективність використання інвертованих органічних ФВ структур з прозорим електродом ZnO легованим алюмінієм для фотовольтаїчних перетворювачів з низькою собівартістю виготовлення. У інвертованих структурах ФВ елемент освітлюється через прозорий катод, який є матеріалом з низькою роботою виходу. На відміну від традиційної структури, в якій освітлення відбувається через анод, в інвертованій геометрії матеріал з малою роботою виходу не має прямого контакту з навколишнім середовищем, яке викликає його передчасне старіння. Допування ZnO алюмінієм дає можливість досягнути двох цілей: 1) підвищення електропровідності; 2) зменшення роботи виходу, що, в свою чергу, покращує ефективність ФВ елементу завдяки збільшенню напруги холостого ходу. Однак, при достатньо високому рівні допування можуть  виникати внутрішньо зонні  оптичні переходи, що є небажаним.

Додаткове підвищення ефективності таких ФВ елементів можливе завдяки використанню Al-вмісних наночастинок між прозорим електродом та активним шаром. Плазмонна смуга поглинання світла такими чатинками лежить на короткохвильовому краю області спектру фоточутливості активного шару, тому використання Al наночастинок не буде перекривати основного діапазону спектральної ефективності цих ФВ перетворювачів.

Вибрана технологічна послідовність виготовлення гнучких фотовольтаїчних джерел електрики на основі  золь-гель методу дає можливість створювати шари прозорого електропровідного електроду з малою роботою виходу. Використання дешевої технології синтезу для створення легких та гнучких  ФВ джерел електрики є перспективним для широкого їх використання на транспорті (наприклад, в салонах літаків) як додаткових джерел живлення.

Ключові слова


фотовольтаїчні елементи; прозорий провідний оксид; ZnO:Al; наночастинки

Посилання


Hsu H.-L., Juang T.-Y., Chen C.-P., Hsieh C.-M., Yang C.-C., Huang C.-L., Jeng R.-J. Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broad band plasmonic effects of silver nanoplates, Sol. En. Mater. Sol. Cells, 2015, vol. 140, pp. 224 – 231. DOI: 10.1016/j.solmat.2015.04.021.

Liu Y., Chen C.-C., Hong Z., Gao J., Yang Y., Zhou H., Dou L., Li G., Yang Y. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency, Sci. Rep., 2013, vol. 3, p. 3356. DOI: 10.1038/srep03356.

Yang Y.M.,. Chen W, Dou L.,.Chang W.-H, Duan H.-S., Bob B., Li G., Yan Y. High-performance multiple-donor bulk heterojunction solar cells, Nature Photonics, 2015, pp. 190 – 198.

You J., Dou L., Yoshimura K., Kato T., Ohya K., Moriarty T., Emery K., Chen C.-C., Gao J., Li G., Yang Y. A polymer tandem solar cell with 10.6% power conversion efficiency, Nature Commun., 2013, vol. 4, pp. 1446-1 – 1446-10. doi: 10.1038/ncomms2411.

Bai S., Wu Z., Xu X., Jin Y., Sun B., Guo X., He S., Wang X., Ye Z., Wei H., Han X., Ma W. Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature, Appl. Phys. Lett., 2012, vol. 100, No. 20, p. 203906. DOI: 10.1063/1.4719201.

Scharber M.C., Sariciftci N.S. Efficiency of bulk-heterojunction organic solar cells, Progress in Polymer Science, 2013, vol. 38, No. 12, pp. 1929 – 1940. DOI: 10.1016/j.progpolymsci.2013.05.001.

Kim Y., Choulis S.A., Nelson J., Bradley D.D.C., Cook S., Durrant J.R. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene, Appl. Phys. Lett., 2005, vol. 86, No. 6, p. 063502. DOI: 10.1063/1.1861123

Park S. H., Roy A., Beaupre S., Cho S., Coates N., Moon J.S., Moses D., Leclerc M., Lee K., Heeger A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nat. Photonics, 2009, vol. 3, No. 5, pp. 297 - 302. DOI: 10.1038/nphoton.2009.69.

Kislyuk V. V., Dimitriev O. P. Nanorods and nanotubes for solar cells, J. Nanosci. & Nanotechnol., 2008, vol. 8, No. 1, pp. 131 – 148.

Sun Y., Seo J.H., Takacs C.J., Seifter V, Heeger A.J. Adv. Mater., 2011, vol. 23, No. 14, pp. 1679 – 1683. DOI: 10.1002/adma.201004301.

Perrier G., De Bettignies R., Berson S., Lemaıtre N., Guillerez S. Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells, Sol. En. Mater. Sol. Cells, 2012, vol. 101, pp. 210 – 216. DOI: 10.1016/j.solmat.2012.01.013.

Li G., Chu C.-W., Shrotriya V., Huang J., Yanga Y. Efficient inverted polymer solar cells, Appl. Phys. Lett., 2006, vol. 88, 2006, pp. 253503-1 - 253503-. DOI: 10.1063/1.2212270.

Sakshum K., Kushagra K., Gauravi X., Prakhar K. Plasmonic Study of Nanoparticles in Organic Photovoltic Cells: A Review, J. Org. Inorg. Chem., 2017, vol. 3, No. 1:2, pp. 1 – 8. DOI: 10.21767/2472-1123.100022.

Feng L., Niu M., Wen Z., Hao X. Recent Advances of Plasmonic Organic Solar Cells: Photophysical Investigations, Polymers, 2018, vol. 10, No. 2, pp. 123-1 – 123-33. DOI:10.3390/polym10020123.

Jang Y.H., Jang Y.J., Kim S., Quan L.N., Chung K., Kim D.H. Plasmonic Solar Cells: From Rational Design to Mechanism Overview, Chem. Rev., 2016, vol. 116, No. 24, pp. 14982–15034. DOI: 10.1021/acs.chemrev.6b00302

Tore N., Parlak E., Gunes S., Ozturk U., Utkan G., Denizci A.A., Basarir F. Efficiency Enhancement of P3HT: PCBM Based Organic Photovoltaic Devices via Incorporation of Bio-synthesized Gold Nanoparticles, Austin J Nanomed Nanotechnol, 2014, vol.2, No. 6, pp. 1036-1 - 1036-5.

Stratakis E., Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices, Materials Today, 2013, vol. 16, No. 4, pp. 133 – 146. DOI: 10.1016/j.mattod.2013.04.006.

Gan Q., Bartoli F. J., Kafafi Z. H. Plasmonic-enhaced organic photovoltaics: breaking the 10% efficiency barrier. Adv. Mater., 2013, vol. 25, No. 17, pp. 2385 – 2396. DOI: 10.1002/adma.201203323.

Cushing S.K., Wu N. Plasmon-Enhanced Solar Energy Harvesting, Electrochem. Soc. Interfacem, 2013, vol. 22, No. 2, pp. 63 – 67. DOI: 10.1149/2F08132if.

Nishijima Y., Ueno K., Kotakw Y., Murakoshi K., Inoue H., Misawa H. Near-Infrared Plasmon-Assisted Water Oxidation, J.Phys. Chem. Lett., 2012, vol. 3, No. 10, pp. 1248 – 1252. DOI: 10.1021/jz3003316.

Kochergin V., Neely L., Jao C.-Y., obinson H.D. Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices, Appl. Phys. Lett., 2011, vol. 98, No. 13, p. 133305. DOI: 10.1063/1.3574091.

Zhang Y., Ouyang Z., Stokes N., Jia B., Shi Z., Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells, Appl. Phys. Lett., 2012, vol. 100, No. 15, p. 151101. DOI: 10.1063/1.3703121.

Jayathilake D. S., Nirmal Peiris T. A. Overview on Transparent Conducting Oxides and State of the Art of Low-cost Doped ZnO Systems, S.F. J.Mater. Chem Eng., 2018, vol. 1, p. 1004.

Oba F., Togo A., Tanaka I., Paier J., Kresse G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study, Phys.Rev. B, 2008, vol. 77, No. 24, p. 245202. DOI: 10.1103/PhysRevB.77.245202.

Vidap R. V., Bandgar S. S., Shahane G. S. Structural, Morphological and Optical Properties of Sol-Gel Spin Coated Al-doped Zinc Oxide Thin Films, J. Nanosci. and Nano Eng., 2015, vol. 1, No. 4, pp. 259-264.

Chenb W.-J., Liua W.-L., Hsieh S.-H., Hsua Y.-G. Synthesis of ZnO:Al Transparent Conductive Thin Films Using Sol-gel Method, Procedia Engineering, 2012, vol. 36, pp. 54 – 61. DOI: 10.1016/j.proeng.2012.03.010

Kondratiev V. I., Kink I., Romanov A. E. Low temperature sol-gel technique for processing Al-doped Zinc Oxide films, Materials Physics and Mechanics, 2013, vol. 17, No. 1, pp. 38 - 46.

Schuler T., Aegerter M. A. Optical, electrical and structural properties of sol gel ZnO:Al coatings, Thin Solid Films, 1999, vol. 351, No. 1-2, pp. 125 – 131. DOI: 10.1016/S0040-6090(99)00211-4

Touam T., Vrel D., Souded N., Yahia S.B., Brinza O., Fischer A., Boudrioua A. AZO Thin Films by Sol-Gel Process for Integrated Optics, Coatings, 2013, vol. 3, No. 3, pp. 126 – 139. DOI: 10.3390/coatings3030126.

Ghorbani H.R. A Review of Methods for Synthesis of Al Nanoparticles, Oriental J. Chem., 2014, vol. 30, No. 4, pp. 1941 – 1949. DOI: 10.13005/ojc/300456.

Meziani M. J., Bunker C. E., Lu F. S., Li H. T., Wang W., Guliants E. A., Quinn R. A., Sun Y. P. Formation and Properties of Stabilized Aluminum Nanoparticles, ACS Appl. Mater. Interfaces, 2009, vol. 1, No. 3, pp. 703 – 709. DOI: 10.1021/am800209m.

Chandra S., Kumar A., Tomar P.K. Synthesis of Al nanoparticles: Transmission electron microscopy, thermal and spectral studies, Spectrochimica Acta Part A, 2012, vol. 92, No. 15, pp. 392– 397. DOI: 10.1016/j.saa.2012.02.034.

Manikam V.R., Cheong K. Y., Razak K. A. Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys, Materials Sci. Eng. B, 2011, vol. 176, No. 3, pp. 187–203. DOI: 10.1016/j.mseb.2010.11.006.

Gilaki M. Synthesis of magnetic Al/Au nanoparticles by co-reduction of Au3+ and Al3+ metal salts. Pakistan J. Biol. Sci, 2010, vol. 13, No. 16, pp. 809 – 813.

Kislyuk V. V., Trachevskij V. V. NMR study of Au/Al bimetallic nanosystems in solution, Proc. 10th SSSI, Smolenice, Slovak Republic, November 19 – 22, 2018, pp.40 – 41.


Повний текст: PDF

Посилання

  • Поки немає зовнішніх посилань.


E-ISSN 2310-5461, ISSN 2075-0781

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Ulrich's Periodicals DirectoryIndex CopernicusDOAJSSMРИНЦWorldCatCASBASEDRIVERНаціональна бібліотека ім. ВернадськогоНауково-технічна бібліотека НАУ