Multi-gpu algorithm for assessment of the mutual information based on B-spline functions
DOI:
https://doi.org/10.18372/2073-4751.1.7219Abstract
A new approach to accelerate the evaluation of mutual information method based on B-spline function, using the graphics accelerator. For efficient mapping of this type of architecture, programming model was used Compute Unified Device Architecture (CUDA) to design and implement new distributed algorithm based on CUDA-MI. The proposed implementation has shown speed up to 224 times using double precision on 4 GPU compared to a multi-threaded implementation of quad-processor for large data sets. The results were used to generate correlation matrices trajectories complex protein molecules. A comparison with existing methods, including g_corellation showed an increase in the quality of the resulting matrix of correlations in less time
References
Fraser AM, Swinney HL: Independent co-ordinates for strange attractors from mutual information. Physical Review A 1986, 33:2318-2321.
Pluim JPW, Maintz JBA, Viergever MA: Mutualinformation-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 2003, 22:986-1004. PubMed
Arsic I, Thiran JP: Mutual information eigenlips for audio-visual speech recognition. Proc 14th Eur Signal Processing Conf (EUSIPCO) 2006.
Zhou X, Wang X, Dougherty ER: Con-struction of genomic networks using mutual-information clustering and reversible-jump Mar-kov-chain-Monte-Carlo predictor design. Signal Processing 2003, 83:745-761.
Zhou X, Wang X, Dougherty ER, Russ D, Suh E: Gene Clustering Based on Clusterwide Mutual Information. Journal of Computational Biology 2004, 11:147-161.
Daub CO, Steuer R, Selbig J, Kloska S: Estimating mutual information using B-spline functions-an improved similarity measure for ana-lysing gene expression data. 2004., 5:
Zola J, Aluru M, Aluru S: Parallel information theory based construction of gene regulatory networks. Hipc 2008, 336-349.
Butte AJ, Kohane IS: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing 2000, 415-426.
Schafer J, Strimmer K: An empirical Bayes approach to inferring largescale gene association networks. Bioinformatics 2005, 21(6):754-764.
D'Haeseleer P, Wen X, Fuhrman S, So-mogyi R: Mining the gene expression matrix: In-ferring gene relationshops from large scale gene expression data. Second International Workshop on Information Processing in Cells and Tissues 1998, 203-212.
Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7:601-620.
Chen X, Chen M, Ning K: BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network. Bioinformatics Application Note 2006, 22:2952-2954.
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A: ARACNE: An Algorithm for the Reconstruc-tion of Gene Regulatory Networks in a Mammali-an Cellular Context. BMC Bioinformatics 2006., 7(S7):
Wilson J, Dai M, Jakupovic E, Watson S, Meng F: Supercomputing with toys: harnessing the power of NVIDIA 8800GTX and playstation 3 for bioinformatics problems. Comput Syst Bioinformatics Conf 2007, 387-390.
Lindholm E, Nickolls J, Oberman S, Montrym J: NVIDIA Tesla: A unified graphics and computing architecture. IEEE Micro 2008, 28:40-52.
NVIDIA: NVIDIAFermiArchitecture. [http://www.NVIDIA.com/object/fermi_architecture.html] webcite
Manavski SA, Valle G: CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bio-informatics 2008., - 98 с.
Schatz MC, Trapnell C, Delcher AL, Varshney A: High-throughput sequence alignment using graphics processing units. BMC Bioinformatics 2007, - Р. 143-155.
Liu Y, Maskell DL, Schmidt B: CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units. 2(73) BMC Research Notes 2009. - Р. 139-141.
Liu Y, Schmidt B, Maskell DL: CUDASW++2.0: enhanced Smith-Waterman pro-tein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstrac-tions. BMC Research Notes 2010., 3(93), - Р. 98-107.
Liu W, Schmidt B, Voss G, Muller-Wittig W: Accelerating Moleculer Dynamics simulations using Graphics Processing Units with CUDA. Computer Physics Communications 2008, - 367 р.
Zola J, Aluru M, Sarje A, Aluru S: Parallel Information Theory Based Construction of Ge-nome-wide Gene Regulatory Networks. IEEE an-sactions on Parallel and Distributed Systems 2010, - Р. 1721-1733.
CUDA N: NVIDIA CUDA C Program-ming Guide Version 3.1.1. 2010.
Den Bulcke TV, Leemput KV, Naudts B, van Remortel P, Ma H, Verschoren A, Moor BD, Marchal K: SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Research Notes 2011, - 253 р.
Haixiang Shi, Bertil Schmidt, Weiguo Liu and Wolfgang Muller-Wittig: Parallel mutual in-formation estimation for inferring gene regulatory networks on GPUs. BMC Research Notes 2011, - Р. 243-253.
Alexander Kraskov, Harald Stögbauer, and Peter Grassberger: Estimating mutual information. Phys. Rev. E 69, 066138 (2004), - Р. 134-149.
П.Грубый, С. Стиренко: Multi-GPU алгоритм оценки взаимной информации для моделирования молекулярной динамики. High performance computing HPC-UA’2012, - Р. 158-163.
O.F. Lange, H. Grubmuller, “Generalized Correlation for Biomolecular Dynamics,” PROTEINS: Structure, Function, and Bioinformatics, 62, 2006, - Р. 1053-1061.
Downloads
Published
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).