А. А. Егурнов, М. П. Коркина


The cosmological model withperfect fluid is considered. We suppose that this model is homogeneous and anisotropic. The analysis of the spatialcurvature tensor invariants showed that they have no singularities and depends on arbitrary function (t) and haveno singularities. Construction of the model is based on the following boundary conditions: 1) As initial conditions wechoose the Big Bang, the corresponding Friedman model. We also suppose that at initial moment of time we haveultrarelativistic state equation. 2) When t→∞ describing metric turns into Robertson–Milne metric.


cosmological model; spatial curvature tensor.


Бурликов В.В., Коркина М.П. Однородные сферические конфигурации переменной пространственной кривизны

// Известия вузов. Физика. — 1998. — №3. — С. 12–17.

Коркина М.П. Уравнения Эйнштейна для жидкой сферы и массовая функция // Известия вузов. Физика. — 1995.

— №4. — С. 90–95.

Ландау Л.Д., Лифшиц Е.М. Теория поля. — М.: Наука, 1973. — С. 343.

Мизнер Ч., Торн К., Уиллер Дж. Гравитация. Т.1. — М.: Мир, 1977. — C. 273.

Boots S.V., Burlikov V.V., Korkina M.P. Model of a fluid sphere with the ultrarelativistic equation of state at the

center // Gravitation and Cosmology. — 1996. — 2, №2(6). — P. 167–173.

Cook M.W. On a Class of Exact Spherically Symmetric Solutions to the Einstein Gravitation Field Equations // Aust.

J. Phys. — 1975. — 28. — P. 413–422.

Kramer D., Stephani H., Mac-Callum M.A.H., Herlt E. Exact Solutions of Einstein’s Field Equations. — Cambridge.

— 1980. — P.416.

Full Text: PDF


  • There are currently no refbacks.